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Abstract 
The effective inhibition of MS corrosion in H2SO4 by CP and CP + KI was assessed by EIS. 
SM of MS was studied using SEM and AFM. The rise in Rct and decrease in Cdl, with 
higher C of CP and CP + KI, confirmed MS CI. IE(%) increased with higher C of CP only 
and CP + KI (from 10-3 to 10-1 M). CP maximum IE(%) was 93.9%, at 10-1 M. CP + KI, due 
to I- ions synergistic effect, showed an IE(%) of about 98.8%, at 10-1 M. CP only and CP + 
KI adsorption mechanism followed Langmuir’s isotherm. SM studies suggested that a 
barrier film of CP only and CP + KI, mitigated MS surface corrosion. CP + KI is an 
efficient inhibitor in H2SO4.  
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Introduction 
Metallic corrosion is affected by environmental factors (including moisture and T) 
and surface conditions, such as energy, exposed area, roughness and oxides stability, 
which are inherently related to the materials composition. Unanticipated failures 
(stream generator and pipeline stress corrosion cracking) and system shutdowns 
occur in oil and gas industries, at pipelines, liquefied natural gas terminals and 
refineries, due to corrosion, which results in monetary losses. When analyzing any 
method to control corrosion in industrial systems, operational processes should 
                                                           
 The abbreviations and symbols definition lists are in page 67. 
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comprise factors such as coatings durability, maintenance schedule, service life, 
sustainability and life cycle costs.  
The selection of the most effective corrosion control system is important. Corrosion 
protection systems include galvanizing, painting, coating, and the use of CI, such as 
organic, inorganic, volatile, adsorption-type, anodic, cathodic, mixed and 
environmental friendly inhibitors. CI performance is mainly related to the molecules 
physicochemical properties, such as their electronic structure, electron density at the 
donor atom and functional group. Pyridine and its derivatives are classified as 
accepted CI. The influence of numerous functional groups on pyridine, and their 
derivatives, capability as CI for various metals and alloys in acidic/alkaline media, 
has been reported in literature [1-12]. The heterocyclic compound is adsorbed onto 
the metallic surface through their active sites. The inhibitor adsorbed protective 
layers shield the metallic surface from direct contact with corrosive ions [13-23]. 
The present paper studied the CI of MS in H2SO4 by CP only and CP + KI, 
employing Ec methods such as EIS. It discussed the complex-plane impedance 
Nyquist and Bode plots for MS in 0.5 M H2SO4, without and with different C of CP, 
and it also described KI synergistic effect, at 308 K. SEM and AFM techniques were 
used to analyze the SM of MS. 
 
Experimental analysis 
Specimen preparation 
Uniform surfaces of MS specimens were prepared with a grinding machine using 
emery paper of different grades (220, 400, 800 and 1000). MS was employed as 
WE. For the EIS experiment, the WE exposed area was of 1 cm2. 
 
Ec technique 
Ec investigations were done by an CHI 760D model Ec work station. EIS 
experiment was performed with an AC signal of 1 mV amplitude, at OCP, and at a 
frequency range from 100 KHz to 10 MHz. 
 
SM 
The SM of MS coupons was studied using a Ziess S-3700 N SEM and Nanosurf 
Naio AFM (both from Germany). The MS surface area of 1 cm2 was smoothened with 
150, 600 and 2000 grade emery paper, and then cleaned with distilled water and 
acetone. MS was exposed to H2SO4 without and with 10-1 M CP only and CP + KI, at 
298 K, for 6 h, and then it was washed and dried before surface examinations. 
 
Results and discussion 
EIS  
The CI of MS was investigated by EIS method. Fig. 1 shows impedance plots for 
MS in H2SO4 without and with CP only and CP + KI, at 308 K. Nyquist plots show 
that the depressed semi-circle increased with higher C of CP, indicating that MS 
corrosion was largely controlled by a charge transfer mechanism. This kind of 
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behavior is a common feature of solid electrodes, which causes frequency 
dispersion, roughness and inhomogeneities on the solid electrode surface.  
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

(a) 
 
 

 

 

 

 

 
 
 

 
(b) 

Figure 1: Nyquist Plots of MS in 0.5 M H2SO4, at 308 K, with various C of: (a) CP; and 
(b) CP + KI. 
 

EIS parameters, such as Rct, Cdl and IE(%), are shown in Table 1. IE(%) was 
evaluated by using the following relation [24]: 

  IE% =  
ୖౙ౪ିୖౙ౪

౥

ୖౙ౪
× 100      (1) 

 
where Ro

ct denotes Rct of the solution without inhibitor. Cdl was determined from the 
equation given below: 
 
  Cୢ୪ = (2πfRୡ୲)ିଵ    (2) 
 
The Bode plot (Fig. 2 a-d) shows that θmax values are related to the electrode . Low 
θmax values correspond to high . Table 1 shows that θmax in H2OS4 was about 26.3, 
and it gradually increased upon CP + KI addition, which suggests that  decreased 
with the inhibitor. θmax observed upon I ions addition indicates that the system was 
approaching an ideal polarized electrode.  
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Figure 2: Bode plots of MS in 0.5 M H2SO4, at 308 K, with various C of: (a) and b) CP; 
(c) and (d) CP + KI. 
 

Table 1: Demonstration of EIS data on MS with various C of CP and CP + KI in 0.5 M H2SO4. 

Additive 
 C 
 (M) 

   Rct 

(Ω/cm2) 
Freq. 
(Hz) 

        Cdl 

(F/cm2) x 10-4 
IE(%)    θ θmax 

H2SO4 0 2.404 11.91 55.62 - - 26.3 

CP 
10-1 39.561 1.738 2.316 93.92 0.939 49.1 
10-2 13.192 4.542 2.658 81.77 0.817 47.6 
10-3 5.156 8.071 3.826 53.37 0.533 42.3 

CP + KI 
10-1 206.179 1.43 5.39 98.83 0.988 59.3 
10-2 142.461 2.55 4.38 98.31 0.983 55.8 
10-3 32.315 2.55 19.32 92.56 0.925 49.9 
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Table 1 reveals that there was increase in Rct value with higher C of CP, from 10-3 to 
10-1 M (Fig. 3). In contrast, there was a decrease in Cdl value with higher C of CP. 
Due to the synergistic effect of I ions and the rise in the inhibitor C, the interface Rp 
increased, because of CP + KI molecules adsorption onto the MS surface. The  by 
CP and CP + KI molecules allowed for CI [25]. The following equation shows the 
correlation between Cdl and the protective layer thickness. 
 
  𝛿௢௥௚ =  

ఌబఌ೟

஼೏೗
                 (3) 

 
where εo and εt denote vacuum and relative dielectric constants, respectively. Cdl 

values were reduced, due to a decrease in the local dielectric constant or to an 
increase in the electrical double layer, caused by CP molecules adsorption onto the 
metal/solution interface, and by the water molecules gradual replacement by the 
inhibitor on the MS surface. This resulted in lower MS dissolution [26], confirming 
that CP effectively retarded MS corrosion process in H2OS4. 
 

 
Figure 3: Variation of Rct with CP and CP + KI C. 

 

Fig. 4 shows the relation between IE(%) of CP and log C, at 308 K, and that IE(%) 
increased with higher C of CP and CP + KI, from 10-3 to 10-1 M.   
 

 
Figure 4: IE (%) versus log C. 

 

CP IE(%) values were 53.3, 81.7 and 93.9%,  at 10-3, 10-2 and 10-1 M, respectively. 
However, they were 92.5, 98.3 and 98.8%, at 10-3, 10-2 and 10-1 M, respectively, 
upon I ions addition, accordingly [27, 28]. Due to I ions large ionic radius and high 
hydrophobicity, they participated in the adsorption process onto the MS surface, 
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through a synergetic effect that caused corrosion inhibition [29-32]. CP seems to be 
a great inhibitor in 0.5 M H2OS4, and its potential was enhanced by KI, since it 
achieved 98.8(%) IE(%). Similar outcomes have been reported in literature [33, 34].   

 

Adsorption isotherm 
 parameters determined from EIS measurements are listed in Table 1, and they were 
used to identify the best adsorption isotherm. Ec measurements confirmed the best 
fitted Langmuir’s adsorption isotherm, for which the following relation has been used 
[35]:  
 

    
େ

஘
 =  

ଵ

୏౗ౚ౩
+  C           (4) 

 
Fig. 5 shows that the plot between C/θ and C of CP and CP + KI in 0.5 M H2OS4, at 
308 K, gave a straight line.  
 

 
Figure 5: Langmuir’s adsorption isotherm for CP and CP + KI in H2SO4. 

 

It is evident from the outcomes that linear R2 was 1, which implies that the adsorption 
mechanism of CP and CP + KI molecules onto the MS surface obeyed Langmuir’s 
isotherm [36] (Table 2). 
 

Table 2: Karl Pearson’s coefficient of CP and CP + KI adsorption isotherm in 0.5 M H2SO4. 
Organic inhibitor Adsorption isotherm   R2 

CP Langmuir´s 0.9999 
CP + KI Langmuir´s      1 

 

Standard ΔGads of CP and CP + KI is related to Kads, and it can be evaluated by the 
following equation [37]:  
 
   ∆Gୟୢୱ

଴ =  −RT ln(55.5Kୟୢୱ)     (5) 
 
where R is the universal gas constant and 55.5 is molar C of H2O. As shown in 
Table 3, CP and CP + KI ΔGads values were negative (-27.97 and -34.13 kJ/mol, 
respectively), which indicates that their adsorption onto the MS surface was a 
spontaneous process that occurred through a chemical bond (chemisorption) [38]. 
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Table 3: Adsorption parameters for MS surface corrosion in H2SO4 with inhibitors, at 308 K. 

Inhibitor Intercept      K  
(L/mol) 

  ∆𝐆𝐚𝐝𝐬
𝟎  

(kJ/mol) 
  CP  1 x 10-3   1000  -27.97 
  CP + KI  9 x 10-5   11,111.1  -34.13 

 

SEM 
SEM images of MS specimens after immersion in H2SO4 with 10-1 M CP and CP + 
KI, show a smoother surface (Fig. 6a and b). This is because the inhibitor molecules 
hindered MS dissolution process, by developing a barrier layer on its surface, which 
retarded the corrosion process.  
 

 
Figure 6: SEM images of the MS surface in 0.5 M H2SO4 with: (a) 10-1 M CP; and 
(b) 10-1 M CP + KI (magnification × 2000).  
 

Hence, CP protected MS against corrosion in H2SO4 solutions. In addition, from the 
images, one also concludes that I- ions played an important role in CI, through their 
participation in the adsorption process, which enhanced MS protection [39, 40].  
 

AFM 
Fig. 7(a) shows that, upon CP addition to H2S04, some small, even and compact 
particles, which orderly scattered on the MS surface, covered it almost completely.  
 

 
Figure 7: Two-dimensional AFM images of the MS surface in 10-1 M: (a) CP; and (b) CP + KI. 

 

On the other hand, AFM image in Fig. 7b shows that, with CP + KI, the MS surface 
became more flat, uniform and homogeneous, which reveals that the inhibitor offered 
an appreciable resistance to corrosion, due to I- synergetic effect.  
The MS surface  in blank H2S04 was up to 1102.8 nm, while it decreased to 392.9 nm 
upon CP addition, and was further reduced to 259 nm with CP + KI ( Table 4).  

a b 
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Table 4: MS  from AFM. 
Compound Average area  

CP 392.9 
CP+KI 259.0 
H2SO4 1102.8 

 

Similar results were reported in literature for organic inhibitors in acidic media [41, 42]. 
Therefore, MS CI took place due to the formation of a protective layer by CP and CP + 
KI, through the adsorption of their molecules onto the alloy surface. The three-
dimensional AFM images of the MS surface, in H2S04 with CP and CP + KI, are shown 
in Fig. 8a and b. 
 

 
Figure 8: Three-dimensional AFM images of the MS surface in 10-1 M: (a) CP; and (b) CP + KI. 
 

Conclusion 
The outcomes of the present work revealed that the studied inhibitors are indeed 
very promising, with excellent ability to hinder MS corrosion process in H2S04. EIS 
results showed that, upon the addition of CP and CP + KI to H2S04, the protective 
film developed on the metal/electrolyte interface caused an increase in Rct, and a 
decrease in Cdl.  It was also confirmed that the inhibition mechanism was linked to 
CP and CP + KI adsorption, which obeys Langmuir’s isotherm. The values from SM 
 studies in the solution with inhibitor were much lower than those in the blank one. 
This means that CP and CP + KI are effective organic CI.  
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Abbreviations 
AC: alternating current 
AFM: atomic force microscope 
C: concentration  
Cdl: double layer capacitance 
CI: corrosion inhibitor/inhibition 
CP: 3-carboxypyridine  
Ec: electrochemical 
EIS: electrochemical impedance spectroscopy 
H2SO4: sulphuric acid 
IE(%): inhibition efficiency 
Kads: adsorption equilibrium constant 
KI: potassium iodide 
Log C: logarithm concentration  
MS: mild steel  
OCP: open circuit potential 
R2: correlation coefficient 
Rct: charge transfer resistance 
Rp: polarization resistance 
SEM: scanning electron microscopy  
SM: surface methodology 
T: temperature 
WE: working electrode 
 
Symbols definition 
ΔGads: adsorption free energy 
: surface roughness 
: degree of surface coverage 
θmax: phase angle   
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