Inhibition Action of Cationic Gemini Surfactants on Mild Steel Corrosion in 1 N HCl

Hariom K. Sharma

Engineering Department, University of Technology and Applied Sciences, Salalah, Sultanate of Oman Corresponding author: drhksharma@gmail.com

> Received 24/01/2022; accepted 20/05/2022 https://doi.org/10.4152/pea.2023410601

Abstract

Corrosion inhibition action of CGS, namely, PPAB, HPAB, DDPAB and HDPAB, on MS in 1 N HCl, has been investigated. The compounds were synthesized in laboratory, and their influence on MS corrosion inhibition was investigated by WL, PDP and EIS techniques. E_a and ΔG_{ads} values of all compounds were calculated, in order to investigate the corrosion inhibition mechanism. The studies revealed that all the compounds inhibited MS corrosion by blocking its active sites. The inhibitors adsorption onto the MS surface in HCl was found to obey the Langmuir's isotherm. CGS IE(%) was found to vary with their nature and C, and the HCl T, IT and C. Maximum IE(%) was 99.7%, for HDPAB (250 ppm), which had the lowest CR, i.e. 0.15 mmy⁻¹.

Keywords: adsorption, CGS, HCl, MS and WL.

Introduction•

The study of steel corrosion in acidic solutions is an important field of industrial research. Steel corrosion inhibition in acidic solutions, by different types of organic compounds, has been extensively studied [1-5]. Surfactants have been used as corrosion inhibitors by some authors [6-8]. They are chemical compounds with amphiphilic molecules, which contain hydrophobic (non-polar) tails and hydrophilic (polar) heads [9].

Recently, the new generation of surfactants called CGS has also been used as corrosion inhibitors in acidic solutions [10, 11]. It was found that they are good corrosion inhibitors, due to their more efficient surface properties, with low values of CMC and surface energy. These compounds have marked IE(%) near their CMC values. CGS molecules consist of two typical surfactant monomers that are covalently linked together by either a rigid or flexible spacer group, i.e., containing two hydrophilic and hydrophobic groups (sometimes three, if the spacer itself includes a hydrophobic chain) [12, 13]. In 1991, the name CGS was assigned to a group of amphiphiles possessing, in sequence, a long hydrocarbon chain, an ionic group, a spacer, a second ionic group and another hydrocarbon tail (Fig. 1) [8].

[•] The abbreviations and symbols definition lists are in pages 406-407.

Short and flexible spacers are preferred, since a "hair pin" turn can be aligned, and two chains of a molecule will lead to micelle formation [6, 10, 11]. These surfactants show superior performance than that of conventional surfactants that are made up of one polar and one hydrophilic moieties. They have much lower CMC and better wetting properties [14, 15].

In the present research work, the corrosion inhibition action of four CGS (PPAB, HPAB, DDPAB and HDPAB) was investigated on MS in HCl solutions, by gravimetric measurements (WL), PDP and EIS studies.

Experimental procedures

Gravimetric measurements

- -

The principle of this method is based on WL measurement of the MS sample after its immersion in HCl, without and with CGS. HCl (Merck) of AR grade and double distilled water were used to prepare the solutions. CGS were prepared with dibromopropane and the corresponding alkyl amine in absolute C_2H_6O , under reflux, for 24 h. After C_2H_6O rotatory evaporation, a product was obtained. The resulting product was recrystallized in pure C_3H_6O and $C_3H_6O-C_2H_6O$ mixtures [8]. The compounds names and molecular structures are given in Table 1.

1	'ab	le 1	Name	and	mol	lecu	ar	struc	ture	of	the	studied	CGS.

No.	Structure	Designation and abbreviation
1.	CH ₃ -(CH ₂) ₄ -NH ₂ ⁺ -(CH ₂) ₃ -NH ₂ ⁺ - (CH ₂) ₄ -CH ₃ 2Br ⁻	PPAB
2.	CH ₃ -(CH ₂) ₅ -NH ₂ ⁺ -(CH ₂) ₃ -NH ₂ ⁺ - (CH ₂) ₅ -CH ₃ 2Br ⁻	HPAB
3.	CH ₃ -(CH ₂) ₁₁ -NH ₂ ⁺ -(CH ₂) ₃ -NH ₂ ⁺ - (CH ₂) ₁₁ -CH ₃ 2Br ⁻	DDPABN
4.	CH ₃ -(CH ₂) ₁₅ -NH ₂ ⁺ -(CH ₂) ₃ -NH ₂ ⁺ - (CH ₂) ₁₅ -CH ₃ 2Br ⁻	HDPAB

WL experiments were carried out in 1 N HCl, using cold rolled MS samples (2 x 2 x 0.25 cm), with the composition (wt%) of 0.14% C, 0.35% Mn, 0.17% Si, 0.025% S, 0.03% P and balance Fe, as the per standard method [16]. For the experiment, coupons were cold-cut from a MS sheet. They were polished using SiC emery papers, washed with C_2H_6O , then degreased with C_3H_6O , for 1 min, followed by rinsing with C_2H_6O and deionized water. Finally, they were dried at air and used.

PDP studies

For PDP studies, MS strips embedded in analdite (a fixed material), with an exposed area of 1.0 cm², were used as WE. The experiments were done at a constant T of 30 ± 2 °C, as per ASTM G3-74 and G5-87. PDP studies were carried out using an

EG&G PARC potentiostat/galvanostat (model 173), a universal programmer (model 175) and a X-Y recorder (model RE 0089). MS was used as WE, a Pt foil was used as AE and SC was used as RE.

EIS studies

Impedance measurements were performed for MS in 1 N HCl, at room T, without and with 50 and 250 ppm HDPAB, at E_{corr} with the AC voltage amplitude of 5 mV, in the frequency range from 5 to 100 Hz. A time interval of few min was given, for the OCP to reach a steady value. All the measurements were carried out with an EG&G PAR (model 5301A) lock-in-amplifier. Only HDPAB was selected for EIS studies.

Results and discussion

Gravimetric measurements

IE% and CR values obtained by gravimetric measurements, using the WL method, with different inhibitor C, at 30 °C, for 3 h, are summarized in Table 2 and shown in Fig. 2.

Figure 2. (•) PPAB, (•) HPAB, (\blacktriangle) DDPAB and (**\blacksquare**) HDPAB IE(%) variation with their C in 1 N HCl.

According to data in Table 2, MS CR values decreased with higher inhibitors C. The maximum IE(%) and minimum CR of each CGS were achieved at 250 ppm, in a 1 N HCl solution. Further increase in C did not cause any appreciable change in the inhibitors performance. IE(%) and θ value for each inhibitor C were calculated using the following equation:

$$IE(\%) = \frac{r_0 - r}{r_0} \times 100$$
(1)

$$\theta = \frac{\mathbf{r}_{o} - \mathbf{r}}{\mathbf{r}_{o}}$$
(2)

where r_o and r are CR without and with inhibitors, respectively.

Inhibitor C (ppm)	WL (mg)	IE(%)	CR (mm/v ⁻¹)
	1/2 5		53 31
PPAR	145.5		55.51
50	7 2	94.8	2.67
100	4.0	97.2	1.48
150	2.9	97.9	1.08
200	2.9	98.6	0.74
250	1.8	98.7	0.69
HPAB	1.0		
50	64	95.6	2.35
100	3.4	97.8	1.21
150	2.1	98.6	0.76
200	15	98.9	0.56
250	13	99.1	0.48
DDPAB	1.5		
50	4.6	96.8	1.71
100	1.2	99.2	0.45
150	1.1	99.2	0.41
200	0.8	99.4	0.30
250	0.6	99.6	0.22
HDPAB			
50	3.3	97.7	1.23
100	1.3	99.1	0.48
150	0.7	99.5	0.26
200	0.6	99.6	0.22
50	0.4	99.7	0.15

Table 2. Corrosion parameters for MS in 1 N HCl, without and with different C of CGS, at 30 °C, for 3 h, from WL measurements.

T influence on CGS IE(%) at optimum C is shown in Fig. 3. IE(%) for all the compounds in 1 N HCl did not show any significant change with the increase in T from 30 to 50 °C, indicating that the inhibitive film formed on the metal surface kept its protective nature at higher T. The four compounds IE(%) variation with IT is shown in Fig. 4. There was no significant change in the four CGS IE(%), with an increase in IT from 3 to 12 h (Fig. 4), which shows that they protected MS from corrosion in 1 N HCl, during longer exposures.

Figure 3. (●) PPAB, (♦) HPAB, (▲) DDPAB and (■) HDPAB IE(%) variation with T, in 1 N HCl.

Figure 4. (●) PPAB, (♦) HPAB, (▲) DDPAB and (■) HDPAB IE(%) variation with IT, in 1 N HCl.

HCl C effect on 250 ppm CGS IE(%), for 3 h, is shown in Fig. 5. It was found that, with an increase in HCl C, there was no significant change in the CGS IE(%). It is clear from Fig. 5 that all tested inhibitors had good performance in 1, 2 and 3 N HCl.

Figure 5. (●) PPAB, (●) HPAB, (▲) DDPAB and (■) HDPAB IE(%) variation with HCl C.

E_a values were calculated using Arrhenius equation [17, 18].

$$\ln\left(\frac{r_2}{r_1}\right) = -\frac{E_a \triangle T}{RT_1 T_2} \tag{3}$$

where r_1 and r_2 are CR at T_1 and T_2 , respectively: $\Delta T = T_2 - T_1$. ΔG_{ads} at different T was calculated from the following equation [19]:

$$\Delta G_{ads} = - RT \ln (55.5 \text{ K}) \tag{4}$$

and the equilibrium constant (K) was given by the following equation:

$$\mathbf{K} = \boldsymbol{\theta} / \mathbf{C} (1 - \boldsymbol{\theta}) \tag{5}$$

E_a values in blank 1 N HCl and with PPAB, HPAB, DDPAB and HDPAB are shown in Table 3.

System	E _a (kJ/mol ⁻¹)	-ΔG _{ads} (kJ/mol ⁻¹)			
	_	30 °C	40 °C	50 °C	
1 N HC1	8.16	-	-	-	
PPAB	11.12	9.44	9.76	11.39	
HPAB	10.97	9.71	10.11	10.35	
DDPAB	11.26	10.41	10.76	10.96	
HDPAB	12.01	10.69	11.30	11.40	

Table 3. E_a and ΔG_{ads} for MS in 1 N HCl, without and with various CGS C.

It was found that E_a was higher in CGS presence, which indicates physical adsorption of these compounds onto the MS surface [19]. ΔG_{ads} low and negative values indicate the inhibitors spontaneous adsorption onto the metal surface [20]. ΔG_{ads} negative values also suggest a strong interaction of CGS molecules with the metal surface [7].

Adsorption isotherm

CGS adsorption behavior onto the metal surface must be known, so that the corrosion inhibition mechanism is understood [21]. θ values for different inhibitors C were evaluated using CR values obtained from the WL method, and they were graphically tested by fitting them to various isotherms. A plot of log (θ /1- θ) against log C, for different CGS C, shows a straight line, indicating that adsorption followed Langmuir's isotherm (Fig. 6).

Figure 6. Langmuir's isotherm plots for (\blacklozenge) PPAB, (\blacksquare) HPAB, (\blacktriangle) DDPAB and (×) HDPAB adsorption onto the MS surface in 1 N HCl.

PDP studies

Cathodic and anodic polarization curves for MS in 1 N HCl with and without inhibitors, with optimum C, at 30 ± 2 °C, are shown in Fig. 7.

Figure 7. PDP curves for MS in 1 N HCl: (1) blank; and with 250 ppm CGS (2) PPAB; (3) HPAB; (4) DDPAB; and (5) HDPAB.

The various electrochemical parameters calculated from Tafel plots are given in Table 4.

Table 4. Electrochemical polarization parameters for MS corrosion in 1 N HCl, with optimum C of various CGS, at $30\pm2^{\circ}$ C.

System	Ecorr (mV vs SCE)	Icorr (mA/cm ⁻²)	IE(%)
1N HCl	-462	0.39	-
PPAB	-460	0.071	81.8
HPAB	-450	0.050	87.2
DDPAB	-445	0.022	94.4
HDPAB	-446	0.009	97.7

Lower I_{corr} values in CGS presence did not cause significant changes in E_{corr} , which suggests that the compounds are mixed type inhibitors, and that they were adsorbed onto the MS surface, thereby blocking the corrosion reaction [18].

EIS

The electrical equivalent circuit for the system (Scheme 1) may be given as:

Scheme 1. Electrical equivalent circuit for the system.

Impedance diagrams, obtained for the frequency range from 5 H_z to 100 kH_z, at E_{corr} , for MS in 1 N HCl, are shown in Figs. 8(a) and (b).

Figure 8. (a) Nyquist plot and (b) Bode plot for MS in 1 N HCl: 1. blank; 2. 50 ppm; and 3. 250 ppm HDPAB.

The impedance diagrams are not perfect semicircles, and this difference has been attributed to frequency dispersion [22]. R_t and C_{dl} values can be evaluated using Nyquist and Bode plots [23]. IE(%) was calculated using the equation:

$$IE(\%) = \frac{(1/R_{t0}) - (1/R_{ti})}{(1/R_{t0})} \times 100$$
(6)

where R_{t0} and R_{ti} are R_t without and with inhibitor, respectively. R_t values increased with higher inhibitor C and this, in turn, led to an enhanced IE(%) (Table 5). C_{dl} values in HDPAB presence decreased, suggesting that the inhibition was due to CGS adsorption onto the MS surface [24].

С	$\mathbf{R}_{\mathbf{t}}$	C_{dl}	IE(%)
(ppm)	(Ohm/cm ²)	(µf/cm ⁻²)	
blank	1.74	1659.00	-
HDPAB			87 57
50	14.00	151.41	07.57
250	40.04	20.01	95.55

Table 5. EIS parameters for MS in 1 N HCl with different HDPAB C, at 30+2 °C.

Inhibition mechanism

MS corrosion inhibition in 1 N HCl by CGS can be explained by the adsorption process. CGS molecules adsorption onto the metal surface may be due to: electrostatic attraction between charged CGS molecules and MS; interaction of unshared electron pairs in the former with the latter, or a combination of both. CGS adsorption isotherm reflected three different adsorption modes (Fig. 9).

Figure 9. CGS modes of adsorption onto the MS surface.

CGS adsorption took place as follows [10]: at low C, it seems that the adsorption occurred through horizontal binding to the hydrophobic region (A). This adsorption was favored by an electrostatic interaction between the two ammonium groups (N^+) and cathodic sites, in the one hand, and Cl⁻ on the metallic surface, on the other hand; when CGS C increased, a perpendicular adsorption took place, due to an interhydrophobic chain interaction (B); at higher inhibitor C, an efficiency plateau appeared. As EIS showed, there was one capacitive loop at high frequencies, which is attributed to the formation of a bimolecular layer on the metal surface.

The difference in PPAB, HPAB, DDPAB and HDPAB IE(%) can be explained on the basis of the number of carbon atoms in the alkyl chain length. IE(%) increased with a higher number of carbon atoms in the chain length [8]. In the case of longer

alkyl chain CGS, the increased hydrophobicity was mainly responsible for the more pronounced micellar growth and decreased CMC values [25].

Conclusions

From the study of PPAB, HPAB, DDPAB and HDPAB corrosion inhibitors, the following conclusions are given:

- 1. All the tested CGS showed good performance, as inhibitors of MS corrosion in a HCl solution.
- 2. All the examined CGS acted as mixed inhibitors in a HCl solution.
- 3. The adsorption of all the four compounds onto the MS surface in the HCl solution obeyed Langmuir's adsorption isotherm.

Acknowledgements

The author would like to acknowledge the support of Engineering Department, UTAS-Salalah-Oman

Author's tasks

Hariom K. Sharma: conceived the original idea of the analysis and research paper; collected the data; performed the experimental work; inserted data or analysis tools; analyzed data obtained by the experiments; wrote the paper.

Abbreviations

AC: alternating current AE: auxiliary electrode **AR**: analytical reagent C₂H₆O: ethanol C₃H₆O: acetone C: concentration C_{dl}: double layer capacitance CGS: gemini surfactants CMC: critical micelle concentration **CR**: corrosion rate **DDPAB**: N-dodecane-diyl-1,3-propane-bis-ammonium bromide E_a: activation energy **E**_{corr}: corrosion potential EIS: electrochemical impedance spectroscope HCI: hydrochloric acid HDPAB: N-hexadecane-diyl-1,3-propane-bis-ammonium bromide HPAB: N-hexane-diyl-1,3-propane-bis-ammonium bromide Icorr: corrosion current density **IT**: immersion time **IE(%)**: inhibition efficiency MS: mild steel

OCP: open circuit potential PDP: potentiodynamic polarization PPAB: N-pentane-diyl-1,3-propane-bis-ammonium bromide RE: reference electrode Rt: charge-transfer resistance SC: saturated calomel SiC: silicon carbide T: temperature WE: working electrode WL: weight loss

Symbols definition

 ΔG_{ads} : free energy of adsorption θ : degree of surface coverage

References

- 1. Quraishi MA, Sharma HK. Thiazoles as corrosion inhibitors for mild steel in formic and acetic acid solutions. J Appl Electrochem. 2005;35:33-39. https://doi.org/10.1007/s10800-004-2055-8
- 2. El-Haddad Mahmoud N, Fouda AS. Corrosion inhibition and adsorption behavior of some azo dye derivatives on carbon steel in acid medium: Synergistic effect of halide ions. Chem Eng Commun. 2013;200:1366-1393. https://doi.org/10.1080/00986445.2012.746675
- 3. Mistry Bhupendra M, Jouhri Smita. Corrosion inhibition of mild steel in 1 N HCl solution by Mercapto-Quinoline Shiff Base. Chem Eng Commun. 2014;201:961-981. https://doi.org/10.1080/00986445.2013.785946
- 4. Abdallah M, Al-Tass H, Jahdaly BA et al. Inhibition properties and adsorption behavior of 5-arylazothiazole derivatives on 1018 carbon steel in 0.5 M H2SO4 solution. J Mol Liq. 2016;216:590-597. https://doi.org/10.1016/j.molliq.2016.01.077
- 5. Usman BJ, Ali SA. Carbon dioxide corrosion inhibitors: a review. Arab J Sci En. 2018;43:1-22. https://doi.org/10.1007/s13369-017-2949-5
- El Achauri M, Hajji MS, Kertit S et al. Some surfactants in the series of 2- (alkyldimethylammonio) alkanol bromides as inhibitors of the corrosion of iron in acid chloride solutions. Corros Sci. 1995;37:381-389. https://doi.org/10.1016/0010-938X(94)00134-R
- El Achauri M, Hajji MS, Salem M et al. Some nonionic surfactants as inhibitors of the corrosion of iron in acid chloride solutions. Corrosion. 1996;52:103-108. https://doi.org/10.5006/1.3292100
- 8. Frignani A, Trabanelli G, Zucchi F et al. On the inhibition action of some N-decyl-pyridinium bromide derivatives on the iron dissolution in 1 N hydrochloric acid solutions. SEIC 5, University, N.S. Sez V, Supl no.7, Ferrara, Italy, 1980, 1185.
- 9. Brown P, Alan Hatton T, Eastoe J. Magnetic surfactants. Curr Opin Colloid Interf Sci. 2015;20:140-150. https://doi.org/10.1016/j.cocis.2015.08.002

- El Achauri M, Infante MR, Izquierdo et al. Synthesis of some cationic gemini surfactants and their inhibitive effect on iron corrosion in hydrochloric acid medium. Corros Sci. 2001;43:19-35. https://doi.org/10.1016/S0010-938X(00)00063-9
- El Achauri M, Kertit S, Gauttaya HM et al. Corrosion inhibition of iron in 1 M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis- (dimethyl tetradecyl ammonium bromide). Prog Org Coat. 2001;43:267-273. https://doi.org/10.1016/S0300-9440(01)00208-9
- 12. Mondal MH, Roy A, Malik S et al. Review on chemically bonded geminis with cationic heads: second-generation interfactants. Res Chem Intermed. 2015;42:1913-1928. https://doi.org/10.1007/s11164-015-2125-z
- 13. Parikh K, Mistry B, Jana S et al. Physico-biochemical studies on cationic Gemini surfactants: role of spacer. J Mol Liq. 2015;206:19-28. https://doi.org/10.1016/j.molliq.2015.01.055
- Zana R, Benrraou M, Rueff R. Alkanediyl-alpha,omega.bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir. 1991;7:1072-1075. https://doi.org/10.1021/la00054a008
- Alami E, Beinert G, Marie P et al. Alkanediyl alpha,omega-bis(dimethylalkylammonium bromide) surfactants. 3. Behavior at the air-water interface. Langmuir. 1993;9:1465-1467. https://doi.org/10.1021/la00030a006
- 16. ASTM (American Society for Testing and Materials), Metal corrosion, Erosion and Wear, Annual Book of ASTM standards. 1987;0.3.02: G1-72.
- 17. Schorr M, Yahalom J. The significance of the energy of activation for the dissolution reaction of the metal in acids. Corros Sci. 1972;12:867-868. https://doi.org/10.1016/S0010-938X(72)80015-5
- 18. Vashi RT, Champaneri VA. Toluidine as corrosion inhibitor for zinc in suphamic acid. Indian J Chem Technol. 1997;4:180-184.
- 19. Putilova IN, Balezin SA, Baranic UP. Metal Corrosion Inhibitors. New York. Pergamon Press. 1960;31.
- 20. Gomma GK, Wahadaan MH. Inhibition action of n-decylamine on the dissolution of carbon steel in H₂SO₄. Indian J Chem Technol. 1995;2:107-110.
- 21. Ajmal M, Jamal D, Quraishi MA. Fatty acid oxadiazoles as acid corrosion inhibitors for mild steel. Anti-Corros Methods Mater. 2000;47:77-82. https://doi.org/10.1108/00035590010316412
- Muralidhran S, Phani KLN, Pitchumani S et al. Polyamino-benzoquinone polymers- a new class of corrosion inhibitors for mild steel. J Electrochem Soc. USA. 1995;142:1478-1483. https://doi.org/10.1149/1.2048599
- 23. Hirozawa ST. Proc 8th Eur Symp Corros Inhib ann University, Ferrara, Italy. 1995;1:25.
- 24. Quraishi MA, Rawat J, Ajmal M. Macrocyclic compounds as corrosion inhibitors. Corrosion. 1998;54:996-1002. https://doi.org/10.5006/1.3284822
- 25. Ansari W, Aslam J, Siddiqui U. Micellar growth of m-2-m type gemini surfactants (m=10, 12, 14) with higher chain length alcohols/amines (C6–C8) in the absence and presence of organic salts (sodium salicylate, sodium tosylate). J Mol Liq. 2012;174:5-10. https://doi.org/10.1016/j.molliq.2012.07.014