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Abstract 

This study reports the evaluation of the anticorrosive performance of polymer 

epoxy resin, namely, Diglycidyl ether 4, 4’-dihydroxydiphenylsulfone (DGEDDS) 

and its polymer composite reinforced with Titanium Dioxide (TiO2), for carbon 

steel (CS) corrosion, in 3% wt. NaCl, using experimental analyses. Thermal, 

electrochemical and morphological techniques were used to demonstrate the 

anticorrosive effectiveness of the standard epoxy resin (MP1) and its TiO2 

composite (MP2). The effect of UV irradiation (for 2000 h), on the effectiveness 

of MP1 and its TiO2 composite (MP2), showed that TiO2 presence appreciably 

enhanced the protection efficiency effect of MP1. 

 

Keywords: Polymer composite, Titanium Dioxide, carbon steel, UV exposure and 3 

wt. % NaCl. 

 

 

Introduction 

Organic coatings form a class of high-performance material, chemically resistant, 

used in protective applications coatings, as one of the ways to combat corrosion [1, 

2]. Generally, epoxy based coatings are amongst the most common industrial 

polymers which have been applied to protect various metals from corrosion in 

aggressive environments [3]. Epoxy coatings have been used as a structural or 

engineering adhesive for the construction of aircrafts, automobiles, etc. The 

excellent chemical resistance, good adhesion to the underlying metal surfaces, 

outstanding thermal stability, good mechanical properties, and electrical insulating 



O. Dagdag et al. / Portugaliae Electrochimica Acta 39 (2021) 183-198 

 

 

 

 

 

184

properties, make epoxy resins an ideal coating material for various applications  

[4, 5]. 

For this purpose, epoxy coatings reduce metals corrosion rate by acting as an 

effective physical barrier between metals and corrosive environment. However, 

owing to wear and abrasion, epoxy based coatings also fail to offer long-term 

corrosion protection. During the curing process of epoxy coatings, the shrinkage of 

epoxy resin takes place and absorbs water, air from the environment, and this,  in 

turn, makes microspores in the epoxy coatings. The pores in the coating facilitate 

to some extent the diffusion of corrosive species such as oxygen, water and ions at 

the metal/epoxy interface, and initiate the corrosion process, depleting the coating 

[6-8].  

However, in practice, all organic coatings are permeable to corrosive species, such 

as oxygen, water and ions, to some extent [9, 10]. In the last few years, the study 

of the performance of nanocomposite coatings has been in the center of attention 

of organic coating scientists, due to their beneficial properties [11, 12]. Various 

nanoparticles, such as ZnO [13], ZrO2 [14], CeO2 [15], CaCO3 [16], Fe2O3 [17], 

SiO2 [18] and TiO2, have, therefore, been employed as reinforcements, in order to 

improve coatings performance in the corrosive environments [19] . They have 

been introduced into coatings, to investigate their effects on protective properties. 

Titanium dioxide (TiO2) is a multi-purpose nanoparticle, utilized to produce 

multifunctional nanocomposite coatings,  because of its high refractive index, its 

strong UV light absorbing capabilities and its resistance to ultraviolet light [20]. 

Furthermore, TiO2 is an inorganic UV-absorber, exhibiting more stability than the 

usual organic UV absorbers or light stabilizers. Additionally, TiO2 nanoparticles 

do not cause/accelerate polymer degradation, compared to UV-absorbent TiO2 

nanoparticles [20]. 

The objective of this research is to determine the effect of TiO2 nanoparticles 

addition  to standard epoxy coatings on their UV stabilizing and anticorrosive 

protective properties, by Electrochemical Impedance Spectroscopy (EIS). EIS has 

been used to measure the performances and to monitor the degradation of the 

coatings protective properties during UV exposure. Equivalent circuit model was 

proposed to interpret the electrochemical impedance data for the herein studied 

coated systems.Therefore, the results evidenced excellent UV stabilization, 

corrosion resistance and application of the new composite coating. 

 

 

Experimental section 

Materials 

Diglycidyl ether 4, 4’-dihydroxydiphenylsulfone (DGEDDS) epoxy resin was 

synthesized in our laboratory (Fig. 1), and the 4, 4’-Methylene dianiline (MDA) 

curing agent was supplied by Sigma-Aldrich. Corrosion experiments were 

performed using carbon steel panels  with the following chemical composition: Fe 

98.70%, C 0.11%, Si 0.24%, Mn 0.47%, Cr 0.12%, Mo 0.02%, Ni 0.1%, Al 

0.03%, Cu 0.14%, Co< 0.0012%, V<0.003% and W 0.06%) [21].  
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Synthesis of diglycidyl ether 4, 4’-dihydroxydiphenylsulfone 

Diglycidyl ether 4, 4’-dihydroxydiphenylsulfone (DGEDDS), shown in Fig. 1, was 

obtained by condensation of epichlorohydrin and 4, 4'-dihydroxydiphenylsulfone. 

The yield of the DGEDDS was of about 89%. 

 
Figure 1. Synthesis route of DGEDDS. 

 

Curing process of Diglycidyl ether 4, 4’-dihydroxydiphenylsulfone 

Epoxy resins can be processed into thermally cured polymers, through many 

chemical compounds acting as bridging agent or hardeners, during the 

implementation [22]. Curing agents can be divided into amine-type curing agents, 

alkali curing agents, anhydrides, and catalytic curing agents, according to their 

chemical compositions. We limited ourselves to one hardener class: primary 

diamine aromatic. According to their chemical structure, the aromatic compounds 

provide very good thermal stability and mechanical properties to the resin. 

Therefore, they are often used for high-tech applications.  

Our curing agent was performed by an aromatic primary diamine. The chemical 

structure is as follow (Fig. 2) [23]: 

 

 

Figure 2. Chemical structure of 4, 4’-Methylene Dianiline (MDA) used  as curing epoxy 

resins. 

 

The reaction between epoxide and diamine is a bi-molecular reaction of the 

addition of the primary amine functions on the epoxide cycles, by the opening of 

oxirane cycles (Fig. 3).  

 

Figure 3. Proposed mechanism for the reaction of an epoxy resin and a primary diamine 

as a hardener. 
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Polymer networks are formed from functional precursors, by reactions between 

their functional groups, resulting in a bond formation. The crosslinked branched 

structures are generally formed by this method. The system consisting of a tetra 

functional epoxy and a bi-functional diamine remains a typical example. Primary 

amine sites, in this system, act as chain extenders, while secondary amines 

produce branches (Fig. 4). 

The action of 4, 4’-ethylene dianiline on the epoxide is described by the following 

reaction [24]: 
 

 

Figure 4. Structure of idealized epoxy resins and primary diamines as a hardener. 

 

Mixing the epoxy resin with the hardener, prior to crosslinking, is performed 

differently, depending on the used hardening agent.  In the protocol that is adopted 

by Levan [25], methylene dianiline, crystallized at room temperature, is placed in 

an oven at 120 °C (a temperature above its melting point), while the resin is 

carried out at 60 °C. Once melted, the curing agent (MDA) is mixed with the 

epoxy resin, to provide a single fluid phase, being then at 70 °C. 

 

Ratio Calculation 

Calculation of stoichiometric coefficients 

In order to get the maximal crosslinking density properties when we harden a 

difunctional epoxy resin with a hardener (especially amines), we used the given 

data (EEW and AHEW) from the technical sheet of the different reactants.  

The Epoxy Equivalent Weight (EEW) of the DGEDDS epoxy resin is calculated 

as below (Equation 1): 

 

 

 

where M is the Molar mass of the resin (M=362 g/mol), and F is the Functionality 

of the resin (f=2). 

Calculating the equivalent amine (Amine Hydrogen Equivalent Weight: AHEW) 

is determined as below (Equation 2): 

 

 
AHEW = M (curing agent) / f = M (MDA) / 4 = 49, 56 g/eq                         (2) 

EEW = M (Epoxy) / f = M (DGEDDS) / 2 = 362 / 2 = 181 g/eq                 (1) 
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where M is the molar mass of the used hardener and f is the functionality of the 

hardener. 

 

Calculation of the weight ratio  

The calculation of the weight ratio is determined as below (Equation 3): 

 

  

The resin (DGEDDS), with an equivalent weight of 181 g/eq of epoxy, is being 

mixed with an amine hardener (MDA), with an equivalent weight of 49, 56 g/eq of 

amine. 

For a complete reaction, with no unreacted components left over, one equivalent 

of epoxy must react with one equivalent of N-H amine.  

One equivalent epoxy weighs 181 g. One equivalent amine weighs 49, 56 g. The 

mix ratio by weight is 181 g epoxy per 49, 56 g of amine. 

The amount of the required MDA for the hardening of 100g of DGEDDS is            

27, 43 g.  

 

 
 

Figure 5. Schematic of epoxy composite coatings preparation method. 

 

Formulation composition and steel coating 

Two epoxy formulations, which differ in the UV stabilizer and anticorrosive 

additive, were prepared. More specifically, these two formulations contained 

DGEDDS and MDA hardener in stoichiometric amounts, MP1, and 5 wt. % TiO2  

MP2, as UV stabilizer and anticorrosive additive. Fig. 5 shows the schematic of 

epoxy coatings preparation. 

The prepared coatings were applied on the steel sheets by mechanical agitation, for 

about 10 min, at room temperature. The coated substrates were cured at 70 °C for 

24 h. The coatings thickness was in the range of 170±10 µm. 

 

Mix ratio by weight = (AHEW / EEW).100 = (49, 56 / 181).100 = 27, 43 g/eq         (3) 

Solvent  Additive Hardener  

Epoxy Resin  Predispersion  Dispersion  

Carbon steel Carbon steel 

Formulations  

Epoxy composite coatings  
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Characterization methods 

Coating evaluation under accelerated conditions 

The corrosion performance of the coating samples was evaluated exposing the 

coated specimens to UV radiation. Commercial UV-A lamps (center wavelength 

of radiation 340 nm) was used for this purpose. The UV radiation, with a power 

density of 50 mW/cm2, was applied to irradiate the metallic surface. The aging 

temperature was regulated at 30 ºC, in the presence of oxygen in the temperature 

range from  293 K to 303 K [10]. 

 

Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC) was performed using a Shimadzu 

Differential Scanning Calorimeter (DSC-60), operating at temperatures from         

20 ºC to 300 ºC, and employing a heating rate of 20 ºC/min. The experiments were 

carried out under a constant flow of nitrogen with a sample weight of 

approximately 5 mg. 

  

Electrochemical Impedance Spectroscopy (EIS) 

In order to evaluate the response as UV stabilizer and anticorrosive coatings 

standard and composite of the two formulations prepared in this work, as a 

function of time, electrochemical impedance spectroscopy (EIS) was performed in 

an aqueous 3 wt. % NaCl solution, at open circuit potential (OCP). Two samples 

were evaluated; MP1 standard, as reference, and MP2 composite. The employed 

working electrode was the carbon steel panel used as metallic substratum, with an 

area of 1 cm2. A platinum ring and saturated calomel electrode (SCE) were used as 

counter and reference electrodes, respectively. EIS measurements were performed 

with a PS 200 Biologic Potentiostat. The amplitude of the EIS perturbation signal 

was 10 mV, and the frequency ranged from 10−2 to 105 Hz. All the EIS analyses 

were conducted under potentiostatic conditions. The EIS measurements were 

carried out at unexposed and UV-exposed (2000 h) conditions, and at 1 h 

immersion in a saline solution, at a temperature of 298 K. Then, the impedance 

spectra were analyzed by fitting the experimental data to an electrical equivalent 

circuit with the software V5.53 Lab Express . 

 

Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) (S3000H, Hitachi) was employed to 

examine the surface morphology and cross-sectional morphology of the coatings. 

SEM measurements were carried out at 20 kV.  

 

 

Results and discussion 

Differential scanning calorimetry (DSC) 

Measurements of Tg provide a direct insight into the mobility of polymer chains; 

Tg was taken as a midpoint in the specific heat transition [26]. Tg is an important 

parameter for application of the epoxy resin thermoset. Tg of the epoxy resin 

(DGEDDS) cured with primary diamine aromatic (MDA) as reference, and with 
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the presence of 5 wt. % of titanium dioxide particle as additive, MP2, have been 

measured by DSC. 

DSC analysis of reference sample, MP1, and composite sample, MP2 ,display Tg 

values in the experimental temperature ranging from 20 to 120 °C. A stack plot of 

DSC thermograms of the product is depicted in Fig. 6. 

Clear single endothermic transitions appeared at the thermograms correspond to Tg 

transitions. The samples: Vstandard X and Vcomposite X have a Tg of 65 °C and 

64 °C, respectively. 

The lowering of the Tg values is attributed to TiO2 presence, which increases the 

free volume and consequently, a Tg drop. 

 

 
Figure 6. DSC curves of reference sample, MP1, and composite sample, MP2. 

 

Performance and degradation of the studied coating 

Several authors investigated the failure mechanism of different coating systems by 

electrochemical impedance spectroscopy (EIS) measurements. This procedure 

allows monitoring the behavior of coated surfaces, giving valuable information 

about both coating degradation and resistance to protect the metal surface in 

different corrosive environments [25, 27, 28]. 

 

Impedance diagrams Bode plots 

The Bode plots exhibit two regions. The first high frequency represents the coating 

capacitance, and the other one, with low frequency, is generally attributed to the 

charge transfer process [29, 30]. 

Fig. 7 shows the Bode plots of MP1 standard epoxy and MP2 composite coatings 

with 2000 h UV exposure, and without UV exposure, after 1 h immersion in a         

3 wt. % NaCl solution. The evaluation was carried out by measuring the 

impedance modulus (/Z/). 

It can be seen from Fig. 7 that the total impedance of standard epoxy coating, MP1, 

and composite epoxy coating, MP2, in the low frequency region (102 -103 Hz), after 

1 hour of immersion in 3 wt. % NaCl, was greater than that of the standard epoxy 

coating. 
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Further, the impedance modulus at low frequency of 0.01 Hz (|Z|0.01Hz) for the MP2 

composite coating is significantly higher than that of the MP1 standard coating, 

after 1 hour of immersion in 3 wt. % NaCl; the |Z|0.01Hz value for MP1 standard 

coating and MP2 composite coating is 1,8×104 and 1,02×105 Ω.cm2, respectively. 

The higher |Z|0.01Hz value of MP2 composite coating, compared to MP1 standard 

coating, shows that composite coatings have higher barrier properties against 

electrolyte diffusion through the coating. 

 

 
Figure 7. Impedance diagrams (Bode plots) of standard epoxy coating, MP1, and 

composite epoxy coating, MP2, after 1 h of immersion of carbon steel in 3 wt. % NaCl 

and after 2000 h UV exposure and 1 h immersion in 3 wt. % NaCl.  

 

After 2000 h UV exposure and 1 h immersion in 3 wt. % NaCl, degradation of the 

standard coating occurs and the |Z|0.01Hz value decreases to 3,3×103 ohm.cm2, due 

to the permeation of a corrosive solution into the coating.  

On the other side, although the |Z|0.01Hz value of the composite coating decreases 

after 2000 h UV exposure and 1 h immersion in 3 wt. % NaCl (which is about 8, 8 

×103Ω. cm2), it is still much higher than the standard coating. 

Moreover, the /Z/ module at high frequency for the composite coating is 

significantly higher than the standard coating, after 1 hour of immersion in 3 wt. % 

NaCl, and after 2000 h UV exposure and 1 h immersion in 3 wt. % NaCl. 

In addition, MP2 composite coating sample shows higher impedance than MP1 

standard coating at low frequency, indicating that MP2 provides higher protective 

performance.   

These results signify that the corrosion protection performance of the composite 

coating, after 2000 h UV and 1 h immersion in 3 wt. % NaCl, significantly 

improves via addition of Titanium Dioxide (TiO2).  

TiO2 enhances the barrier properties of the epoxy coating against the diffusion of 

corrosive agents at the metal/coating interface. 
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Impedance diagrams Nyquist plots 

The Nyquist plots are composed of two loops. The first high frequency (HF) 

represents the coating capacitance and the other one, with low frequency (LF), is 

attributed to the charge transfer process [31]. 

Fig. 8 shows the Nyquist plots of MP1 standard epoxy and MP2  composite 

coatings, with 2000 h UV exposure, and without UV exposure, after 1 h 

immersion in a 3 wt. % NaCl solution.  

Further, the impedance data are modeled via electrical equivalent circuit [32], 

shown in Fig. 9, and the extracted electrochemical parameters are presented in 

Table 1. 

 

 
Figure 8. Impedance diagrams (Nyquist plots) of MP1 standard epoxy coating and MP2 

composite epoxy coating , after 1 h of immersion of carbon steel in 3 wt. % NaCl, and 

after 2000 h UV exposure and 1 h immersion in 3 wt. % NaCl. 

 

The equivalent electrical circuit is often used to analyze the impedance spectra of a 

metal/coating system. In this paper, an Rs (Qcoat (Rpore (Qdl Rct)) circuit model was 

used to model the coatings behavior, where Rs represents the electrolyte resistance, 

Qcoat and Rpore are the coating capacitance and pore resistance, respectively, and 

double layer capacity (Cdl) and charge transfer resistance (Rct) are used to simulate 

the electrochemical process at the metal interface (Faradic reaction). The 

electrochemical parameters are given in Table 1. 

 

 
Figure 9. Proposed equivalent circuit for numerical simulation of the EIS measurements. 
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Table 1. Different electrochemical parameters extracted from impedance data of MP1 

standard epoxy coating and MP2 composite epoxy coating, after 1 h of immersion of  

carbon steel in 3 wt. % NaCl, and after 2000 h UV exposure and 1 h immersion in 3 wt. 

% NaCl. 
Samples Rs  

(Ω.cm²) 

Qcoat 

(µF/cm²) 

Rpore 

(Ω.cm²) 

Qdl 

(µF/m²) 

Rct (Ω.cm²) 

MP1  286 1.41 5153 1.02 26971 

MP1-2000 h UV 20 34 656 2.8 1960 

MP2  198 0.91 33792 0.11 140975 

MP2-2000 h UV  71 19,6 718 0.29 9630 

 

Double layer capacitance and coating capacitance (Qdl, Qcoat) 

The double layer capacitance (Qdl), which is related to the distribution of ionic 

charges at the metal/coatings interface [33], is significantly lower for MP2 

composite coating, after 1 h of immersion of carbon steel in 3 wt. % NaCl ,and 

after 2000 h UV exposure and 1 h immersion in 3 wt. % NaCl. Besides, Qdl of MP2 

composite coating is lower than MP1 standard coating. The Qdl value increases 

after 2000 h UV exposure and 1 h immersion in 3 wt. % NaCl, due to the 

expansion of active sites [34]. 

The coating capacitance (Qcoat) for MP2 composite coating is lower than MP1 

standard coating, after 1 hour of immersion of carbon steel in a 3wt. % NaCl 

solution. This is because TiO2 fills the micropores and decreases the water uptake 

into the coating. The variation of Qcoat proved the degradation of two of the MP1 

matrix coatings after 2000 h exposure to UV and 1 h immersion in corrosive 

media, and limited degradation in the MP2 coating. Qcoat increased with increasing 

UV exposure time, which indicated, after immersion in corrosive media, that the 

penetration of water into the coating/metal interface was accelerated, causing an 

increase in the microcracks. The increase of microcracks facilitates the penetration 

of water into the interface. The dielectric constant of the coating increased with 

diffusion of water into the coating/metal interface. 

 

Coating resistance and charge transfer resistance (Rpore, Rct) 

The results presented in Table 1 show that the higher value of Rpore and Rct for 

MP2 composite coating than that of the MP1 standard coating can be explained by 

the good dispersibility of TiO2 in the coating and improving coating electrical 

resistance against the transfer of corrosive species through the pores of the coating. 

The increase in Rcoat and Rct indicates the effect of TiO2 on the decrease of the 

penetration of corrosive species into the coating/metal interface, through 

decreasing coating porosity [35]. 

However, Rpore and Rct values of coatings decreased with an increase in UV 

exposure and immersion time, which caused the creation of microcracks. The MP1 

standard coating shows that the Rpore value decreases after 2000 h, which is 

attributed to the uptake of electrolytes into the coating. However, MP2 composite 

coating shows slight changes in Rpore value. The results show that TiO2 prevents 

the degradation of coatings. In addition, TiO2 prevents the propagation of 

microcracks and does not allow water and corrosive species to penetrate into the 
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metal/coating interface. Besides, TiO2 fills micro pores of the coating and 

decreases the possible sites of microcracks formation. 

 

EIS characteristics of coatings after UV exposure 

The EIS results approved the mechanism proposed for preventing the degradation 

of coating under UV exposure (Fig 10). 

 

 
Figure 10. Schematic illustration of the protection mechanism by standard epoxy 

coatings and composite epoxy coatings, at different irradiation periods on carbon steel 

substrates. 

 

By increasing the exposure time up to 2000 h, some variations were observed in 

the resistances of the coatings, showing the rate of degradation by UV radiation. 

The resistance of the two studied coatings decreased more than 103 times, after 

2000 h UV exposure and 1 h immersion in 3 wt. % NaCl.  

The surface of MP1 standard coating had many microcracks. After 2000 h of UV 

exposure to the corrosive media, the corrosive agent diffused into the 

metal/coating interface. Penetration of the corrosive agent led to a decrease in   the 

impedance of DGEDDS-MDA coating. With an increasing immersion time, all 

microcracks were filled by 3 wt. % NaCl. 

After 1 h immersion, the corrosion products, such as rust, filled microcracks 

temporarily. These products limit the penetration of corrosive agents into the 

metal/coating interface and lead to the impedance increase of MP1 coating of about 

one order. With increasing immersion times, these products cannot limit the 

penetration of the corrosive agent, because of their porous nature. Therefore, the 
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impedance of MP2 coating after 2000 h UV exposure and 1 h immersion in 

corrosive media was higher than MP1 coating. MP2 coating had a stable 

impedance, because the TiO2 nanoparticles were more than those of  the MP1 

coating, which  limited the penetration of corrosive agents. Impedance of the MP1 

coating against UV irradiation decreased severally, so it completely lost its 

protective performance.  
 

Surface morphology of coatings before and after UV exposure 
The microstructure of cross sectional surfaces of two carbon steel panels was 

analyzed for change in morphology, before and after 2000 h of UV exposure, by 

SEM, and their micrographs are shown in Fig. 11. 

 

 
Figure 11. SEM images before and after 2000 h UV exposure. 

 

As shown in Fig. 11a, the coating without TiO2 nanoparticles was very smooth for 

the matrix with MP1 standard coating [36, 37]. However, when 5 wt. % of TiO2 

nanoparticles were introduced, the coatings displayed a rough surface. Some 

micron-sized protrusions were observed to be embedded in the MP2 coatings (Fig. 

11b).  

The standard coating, after 2000 h UV exposure, shows micro cracks on the 

surface. The surface of the sample is severely damaged after 2000 h of UV 

exposure. The micro cracks coating surface becomes deep and broaden during UV 

exposure, as shown in Fig. 11 (c). The surface micro cracks in degraded areas 

significantly decreased when titanium dioxide was added to the coating. 

Nevertheless, micro cracks in the coating were invisible after 2000 h UV exposure 

in MP2 coating, as shown in Fig 11 (d). It seems that titanium dioxide decreases 

UV degradation in the coatings.  
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Conclusions 

We have presented two-matrix coatings MP1 standard and MP2 composite coating 

for protection of carbon steel substrates. The composite coating was shown to 

efficiently protect carbon steel substrate, due to its enhanced barrier properties, 

compared to the standard coating.  

The main findings of this study can be drawn as follow: 

- DSC analysis of the MP1 standard sample possessed a higher glass transition 

temperature, compared to the MP2 composite sample. 

- The impedance diagrams, Bode and Nyquist plots study confirmed that TiO2 can 

fill micro pores and limit penetration of water into the coating. 

- SEM results and electrochemical measurements show that the degradation of 

standard coating with many microcracks happened after 2000 h UV exposure, 

but microcracks were not observed on the surface of the composite coating, with 

5 wt. % Titanium Dioxide. 
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