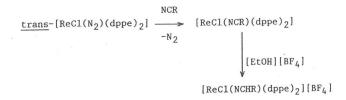
ANODIC DEPROTONATION

OF METHYLENEAMIDO TO NITRILE LIGANDS

AT A RHENTUM CENTRE

M. Fátima C.G. Silva and Armando J.L. Pombeiro*


Centro de Química Estrutural, Complexo I Instituto Superior Técnico, Av. Rovisco Pais 1096 Lisboa Codex, Portugal

ABSTRACT

The activation of a nitrile ligand by an electron rich Re(I) metal centre towards electrophilic attack at carbon to give a ligating methyleneamido species has previously been demonstrated [1]. We now report the electrochemical behaviour of the latter type of complexes, [ReCl(NCHR)(dppe)₂][BF₄] ($\underline{1}$; R=C₆H₄-OMe- $\underline{4}$, C₆H₄Me- $\underline{4}$, C₆H₄F- $\underline{4}$; dppe=Ph₂PCH₂CH₂PPh₂), which are shown to undergo an anodically induced deprotonation to afford novel nitrile compounds ($\underline{2}$) the redox properties of which are also indicated.

RESULTS AND DISCUSSION

The methyleneamido complexes $(\underline{1})$ were isolated as light yellow solids upon the sequence of reactions outlined in the scheme:

Cyclic voltammetry of these complexes, in $CH_2Cl_2/$ 0.2M $[Bu_4N][BF_4]$, at a platinum electrode and at sufficiently high scan rates, reveals a reversible one-electron oxidation (wave I) followed, at a higher potential, by an irreversible anodic process (wave II), (Fig. 1).

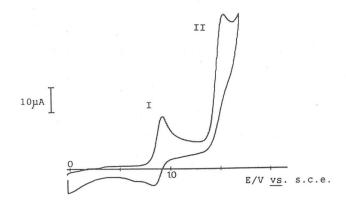


Fig. 1: Cyclic voltammogram for (1. R=C6H4OMe-4)

The reversible anodic process at wave I occurs at a considerably higher potential ($E_{\frac{1}{2}}^{OX}$ = 0.915 - 0.938V <u>vs.</u> s.c.e.)

than that observed for the neutral parent nitrile compounds (-0.13 to -0.11V vs. s.c.e.).

From the knowledge of $E_{\frac{1}{2}}^{OX}$ for complexes $(\underline{1})$, as well as of the electron-richness (E_S) and polarisability (B) of the metal centre {ReCl(dppe)₂}, we have been able to estimate, for the methyleneamido ligands, the P_L ligand parameter [2], a measure of their net electron π acceptor/ σ donor character. By comparing the estimated P_L values (0.069-0.076V) with those known [3] for other related species, one observes that the methyleneamido ligands are better net electron acceptors than CO, approaching the aminocarbyne species CNH_2 .

By controlled potential electrolysis at the first anodic wave of the methyleneamido complexes (1), ligand deprotonation occurs as measured by acid-base titration. The process involves a two-electron transfer and generates a nitrile complex of rhenium(III) (2) [equation (1)]. In fact, as shown by cyclic voltammetry, compounds (2) undergo two successive one-electron reversible reduction processes (Fig. 2) and the final neutral Re(I)-nitrile complexes are easier to oxidise ($E_{\frac{1}{2}}^{OX}$ in the -0.40 to -0.31V range) than the starting nitrile complexes of Re(I).

$$[ReCl(NCHR)(dppe)_2]^{+} \xrightarrow{-2e^{-}} [ReCl(NCR)(dppe)_2]^{2+}$$
(1)
(2)

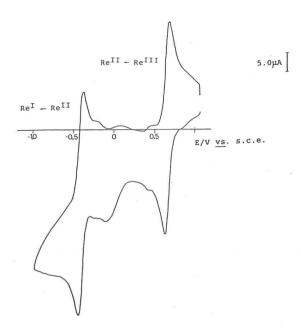


Fig. 2: Cyclic voltammogram for the rhenium(III)-nitrile complex obtained upon anodic C.P.E. of the methyleneamido complex (1, R = C_6H_4Me-4)

Based on some spectroscopic data for the two types of rhenium(I)-nitrile complexes and taking into account that different geometries can affect the redox potential, as already reported for isoelectronic group VI transition metal complexes [4], we are tempted to consider that the final neutral nitrile compounds correspond to the <u>trans</u> isomers whereas the starting rhenium(I)-nitrile complexes present the <u>cis</u> geometry.

As indicated above, methyleneamido complexes are formed by ß-protonation of the corresponding nitrile compounds. However,

the latter cannot be regenerated either upon addition of a base, or electrochemically were an isomer of the parent compound appears to be produced.

In contrast, with the related aminocarbyne complexes, $[ReCl(CNHR)(dppe)_2]^+$, obtained from ß-protonation at ligating isocyanides, the starting compounds are fully regenerated either chemically (reversible protonation-deprotonation reaction) or electrochemically [3].

ACKNOWLEDGEMENTS

This work has been partially supported by JNICT and INIC.

REFERENCES

- [1] A.J.L. Pombeiro, D.L.Hughes, R.L. Richards, <u>J.Chem.Soc.</u>,

 <u>Chem. Commum.</u>, 1988, 1052.
- [2] J. Chatt, C.T. Kan, G.J. Leigh, C.J. Pickett and D.R. Stanley, J. Chem. Soc., Dalton Trans., 1980, 2032.
- [3] M.A.N.D.A. Lemos, A.J.L. Pombeiro, <u>J. Organometal.</u> <u>Chem.</u>, 356, 1988, C79.
- [4] A.M. Bond, R. Cotton, J.J. Jackowski, <u>Inorg.</u> <u>Chem.</u>, <u>14</u>, 1975, 274.