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Abstract 

This work reports on cyclic voltammetry and spectroscopic UV-Vis investigations of 

some pyridazine derivatives 1-8 in dimethylformamide. In the electrochemical study, 

monochlorinated pyridazines 2-8 exhibit two reductions but in the case of dichlorinated 

derivative 1 an additional wave is seen for the reduction of the second carbon-chloride 

bond. The electronic absorption spectra display an intramolecular charge transfer band 

π-π* in the UV region of which depend substantially on the nature of both donor and 

acceptor moieties. These results indicate the π-electron delocalization in the conjugated 

system.  

 

Keywords: pyridazines; electrochemistry; electronic spectra; donor-π-bridge-acceptor 

systems. 

 
 

Introduction 

Several functionalized pyridazines exhibit important biological activity such as: 

antibacterial, antibiotic, antitumour, antiviral and antidiabetes [1]. The 
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derivatives of pyridazines could also find application as ligands in 

supramolecular chemistry and in metallic complexes which exhibit catalytic 

properties [2-3]. These compounds could also be used as semi-conductor 

materials and as materials with non-linear optical properties [4].  

Dipolar push-pull chromophores likely constitute the widest class of compounds 

investigated for their nonlinear optical (NLO) properties [5-6]. These push-pull 

NLO-phores are basically constituted by an electron-donor and an electron-

acceptor as groups which interact through a π-conjugated spacer. It is already 

well-known that the hyperpolarizability (β), which characterizes the molecular 

NLO efficiency, depends on the strength of the donor and acceptor groups, on the 

extent of the π-conjugated path and, for conjugating spacers based on aromatic 

units, on the resonance stabilization energy of the aromatic system [7]. Studies 

demonstrate that heteroaromatic rings play a subtle role in influencing the NLO 

response properties of donor-acceptor compounds. While the aromaticity of 

heteroaromatics affects electronic transmissions between donor and acceptor 

substituents, the electron-excessive or electron-deficient nature of the 

heterocyclic ring systems also plays a major role in determining the overall 

electron-donating and accepting ability of the substituents: electron-excessive 

heterocycles act as auxiliary donors and electron-deficient heterocycles act as 

auxiliary acceptors [4-5]. Thus, attaching a strong acceptor to an electron-

deficient heteroaromatic, such as pyridazines, will yield chromophores with 

significantly enhanced NLO responses [5]. 

In this paper we describe the effect of different groups R (donating or acceptor) 

in the electrochemical and spectroscopic studies of 3,6-disubstituted pyridazine 

derivatives. Mechanistic aspects of the reduction of these compounds are 

discussed on the basis of cyclic voltammetric data.  

 

Experimental 

Voltammetric measurements were performed using a potentiostat/galvanostat 

AUTOLAB /PSTAT 12 with the low current module ECD from ECO-CHEMIE 

and the data analysis processed by the General Purpose Electrochemical System 
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software package also from ECO-CHEMIE. Three electrode-two compartment 

cells equipped with vitreous carbon-disc working electrodes, a platinum-wire 

secondary electrode and a silver-wire pseudo-reference electrode were employed 

for cyclic voltammetric measurements. The concentrations of the compounds 

were typically 1-2 mmol dm-3 and 0.2 mol dm-3 [NBu4][BF4] was used as the 

supporting electrolyte in dimethylformamide (DMF). 

UV-Vis absorption spectra were obtained using a Shimadzu UV/2501PC 

spectrophotometer. 

The chemical structures and the numbers of the pyridazine derivatives studied in 

this article are depicted in Fig. 1. 

 

N N

Cl R

1-8  
Compound R 

1 Cl 
2 OMe 
3 OEt 
4 NH2 
5 NEt2 
6 piperidyl 
7 4-cyanophenylamino 
8 4-nitrophenylamino 

 
Figure 1. Chemical structure of the 3,6-disubstituted pyridazines studied in this work. 
 

The 3,6-dichloropyridazine 1 were purchased from Aldrich and used as received. 

The synthesis of 3,6-disubstituted pyridazine derivatives 2-8 has been described 

elsewhere [8]. These compounds were synthesized from 3,6-dichloropyridazine 1 

through a nucleophilic aromatic substitution. 

 

Results and Discussion 

Electrochemistry 

Table 1 provides cyclic voltammetric data obtained with a carbon electrode in 

DMF containing [NBu4][BF4]. 
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    Table 1. Electrochemical data for pyridazine derivatives 1-8. 
 Reductiona Oxidationa 

Compound -1Ep/V -2Ep/V ∆2Ep/mV Ep 

1 1.99 2.24 - - 

2 2.28 2.64 - - 

3 2.28 2.64 - - 

4 2.47 2.80 - - 

5 2.46 2.80 - - 

6 2.45 2.79 - 0.90 

7 2.15 2.26 75 0.93 

8 1.64 2.03 70 0.93 
a Measurements made in DMF containing 0.1-0.2 mol dm-3 [NBu4][BF4] as base 
electrolyte at a carbon working electrode with a scan rate of 100 mV s-1. Ferrocene 
was added as an internal standard at the end of each measurement, and all Ep values 
are quoted in volts vs. the ferrocene-ferrocenium couple.  
 
Fig. 2 shows cyclic voltammograms for the reduction of pyridazine derivatives 1, 

4 and 8, at a carbon electrode in DMF containing 0.2 mol dm-3 [N Bu4][BF4] 

recorded at a scan rate of 100 mV s-1. The reduction of 3,6-dichloropyridazine 1 

(Fig. 2a) shows three well defined cathodic peaks; the first two reduction waves 

are due to the sequential cleavage of the two carbon-chlorine bonds, and the third 

wave arises from the reduction of pyridazine [9]. The cyclic voltammogram for 

the reduction of 3-amino-6-chloropyridazine 4 (Fig. 2b) gives two cathodic peaks 

and an anodic peak: the first cathodic wave is assignable to reductive cleavage of 

carbon-chlorine bond and the second cathodic peak is indeed due to the reduction 

of 3-aminopyridazine. Under the same experimental conditions, the cyclic 

voltametric behaviour of 3-chloro-6-(4´-nitroanilino)pyridazine 8 depicted in Fig. 

2c is similar to that of 3-amino-6-chloropyridazine 4 but the third peak attributed 

of 3-(4´-nitroanilino)pyridazine is reversible. 

 
Mechanistic of the reduction of chlorinated pyridazines 

There is considerable similarity between the values obtained for the reductions of 

the mono- and dichloro pyridazines and those seen in the reductions of 2-
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bromothiazol [10] and of mono- and dihalopyrimidines [11]. According, it is 

reasonable to propose a mechanistic scheme for the reductive cleavage of 

chlorinated pyridazines that resembles the processes invoked to explain the 

behaviour of those compounds previously studied. 

 

 
 

Figure 2. Cyclic voltammograms of 3,6-dichloropyridazine 1 (a), 3-amino-6-
chloropyridazine 4 (b) and 3-chloro-6-(4´-nitroanilino)pyridazine 8 (c). Recorded in 
DMF – 0.2 mol dm-3 [NBu4][BF4] at a vitreous carbon electrode, scan rate  100 mV 
s-1,  potential in V vs. fc+/fc. 
 

In the reduction of 3-chloro-6-methoxypyridazine 2 at a carbon electrode in 

DMF, we have the addition of one electron to yield a short-lived radical-

anion 2a, from which the chloride ion is expelled to give the 3-

methoxypyridazinyl radical 2b (Scheme 1). 

This radical 2b can be reduced to the 6-methoxypyridazenyl ion 2c directly at the 

cathode (ECE process) or homogeneously by 2a (DISP process): 2a + 2b  ↔  2 

a 

b 

c 
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+ 2c after which 2c can be protonated by the medium (supporting electrolyte or 

solvent) to yield 3-methoxypyridazine. 

 

 

N N
Cl OMe

N N
Cl OMe

N N
OMe

-Cl- N N
OMee- k e-

(2)                                         (2a)                                          (2b)                                   (2c)
 
 
Scheme 1. Reduction of 3-chloro-6-methoxypyridazine at a carbon electrode in DMF. 

 

UV-visible study 

The UV-Vis absorption spectra were obtained for pyridazine derivatives in 

acetonitrile (Table 2). 

 

Table 2. Electronic spectral data for pyridazine derivatives 1-8. 
 

Compound λmax/nma ε/dm3mol-1cm-1  hνICT/eV 

1 273.0 10425 4.54 

2 278.5 19820 4.45 

3 279.5 19050 4.44 

4 239.0 16018 5.19 

5 259.5 16695 4.78 

6 260.0 18713 4.77 

7 298.0 29412 4.16 

8 363.5 24974 3.41 
a Measured in acetonitrile. 
 

The influence of the degree of conjugation between the substituted end groups 

along the conjugated bridge is demonstrated in Fig. 3 by comparison of the 

absorption maxima for 3,6-dichloropyridazine 1 (λmax = 273.0 nm), 3-chloro-6-

methoxypyridazine 2 (λmax = 278.5 nm), and 3-(4´-nitroanilino)-6-

chloropyridazine 8 (λmax = 363,5 nm). The intramolecular charge transfer (ICT) 
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and absortivity coefficient (ε) depend substantially on the nature of the acceptor 

moieties. 

λ (nm)
 

 
Figure 3. UV-Vis spectra of 3,6-dichloropyridazine 1 (a), 3-chloro-6-
methoxypyridazine 2 (b) and 3-chloro-6-(4´-nitroanilino)pyridazine (c), recorded in 
acetonitrile, demonstrating the electron-withdrawing effect of the acceptor end group 
on absorption maxima. 
 

Final Comments 

In this work we report the electrochemical and the spectroscopic UV-Vis 

properties of a series of 3,6-disubstituted pyridazine derivatives. 

Cyclic voltammogram for 3,6-dichloropyridazine exhibits three cathodic waves, 

whereas that for 3-chloro-6-substituted pyridazine shows two cathodic waves, 

arising from sequential cleavage of carbon-chloride bonds as well as the 

reduction of pyridazine.  

The trends observed for the redox potentials and λmax of the 3,6-disubstituted 

pyridazine derivatives are dependent on the donor/acceptor groups. The 

comparison of data for the 4´-cyano and 4´-nitroanilino derivatives, 7-8, with the 

other compounds 1-6, reveals that the last ones provide a more efficient 

delocalization. 
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