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Abstract  
Modern predictive modeling techniques, such as regression, NN and decision trees can be 
used to build better and more useful models. JMP 17.2.0 was used in this study to develop 
a fitting model for microbial growth observed data from chicken manure and banana 
peels labelled as Sample A, and a single chicken manure substrate, identified as Sample 
B. Statistical metrics, including COD (R2), RASE, MAD, negative log-likelihood and 
SSE were used to determine best predictions for Ct (X) from biomass of 22 and 24 
samples (A and B) on SC (S) and SGR of microorganisms (𝜇). Along with estimated Monod 
parameters, TanH function SAS codes for 3 declared hidden layers, also demonstrated by 
surface plots, portrayed Sample B predicted model as the best one, even though the 2 samples 
datasets R2 values for training (A: 0.9887916 and B: 1.0000) and validation (A: 0.9787637 
and B: 0.9999999) pointed to a good fit. According to findings, optimal conditions for 
datasets were: A- biomass = 899868717 mg/L and SC = 4.62 x 109 mg/L, correspondent to 
high µ (0.010201 h-1); and B- biomass = 15351147 mg/L and SC = 9.2322 x 109 mg/L, 
consistent with µ of 0.007316 h-1. RMSE, which is the standard method of choice for 
evaluating the accuracy of predictive models, including those based on NN, should be 
activated in future studies. This research is both timely and relevant in the pursuit of 
sustainable waste management and renewable energy generation. 
 
Keywords: ANN; JMP; Monod; SAS code; SGR; SC; TanH function. 
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Introduction 
Decomposition of organic wastes in an oxygen-free environment requires anaerobic 
microorganisms, which feed on the nutrients it contains, thereby converting it to biofuel. 
The development of several microbial growth kinetics model has helped explaining this 
process. Inherent to most models, such as Andrew, Contois, Monod, Moser and 
Verhulst, are independent factors like biomass and SC, in the bioreactor under 
consideration, where the microorganism’s SGR is the output variable. Since 
exponential microbial growth plays a key role in organic waste conversion, in most 
environmental engineers’ agenda it is crucial to optimize their development, 
especially during biodegradable waste anaerobic decomposition. Kinetic models 
have been employed in recent years, of which parameters were used to predict 
biogas optimal production and the growth rate of isolated microbes that help 
digesting feedstock. Others scholars have employed RSM to generate DOE, 
proposing different combinations of input variables for single or sets of responses or 
outputs. Currently, NN predictive modeling has evolved as a new optimization tool 
in bioprocessing, for biogas yield prediction, with random combination of factors, 
from palm oil mill effluents, cassava wastewater, cow dung and food waste, etc., 
using MATLAB [2, 3, 9, 12]. 
Thorough research shows that prior studies using typical microbial growth kinetic 
parameters for biomass and SC are non-existent, especially a practical application of 
JMP software [7] linked to the anaerobic process. Applying NN predictive modeling 
technique to banana peels and chicken manure anaerobic decomposition can provide 
valuable insights onto processing behavior and enhance its management, leading to 
more efficient and reliable biogas and biofertilizer production. This study aimed to: 
use two different digesters separately charged with Sample A (banana peels + chicken 
manure) and Sample B (chicken manure) for microbial growth study; mathematically 
and experimentally determine and generate a dataset for the respective depleting Ct of 
SC and biomass in the exponential growth phase in their respective chambers, to 
calculate their microbes SGR; use datasets distinctly recorded in JMP software, 
specifying an orthogonal CCD, before programming it to generate a neural predictive 
model; analyze SGR statistical outputs of Sample A and B, for training and validation 
fitted plots; employ OriginPro 2018 software for a user-defined regression analysis, 
specifying the Monod equation, to estimate kinetic parameters for each dataset; and 
compare fits, surface plots, kinetic parameters and the predictive model for the two 
datasets, to determine the optimal combination of input variables. Similar to this 
work, [8] have carried out a combined demonstration of kinetics (using modified 
Gompertz model) and ANN, for biogas production via anaerobic digestion 
observations. [5] have also examined the behavior of biogas yield curve from 
lignocellulosic material using ANN. The present study suggests a different and more 
enhanced approach of merging the idea behind regression, CCD for RSM and neural 
modeling, to achieve the stated goals. 

                                                           
 The abbreviations list is in pages 392-393. 
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Methodology and materials 
Materials sourcing 
Banana peels and chicken manure were collected from Kasuwan Shanu Market and 
UNIMAID Faculty of Agriculture Poultry Farm, respectively, both in Maiduguri, Borno 
State, Nigeria. Drinkable water was utilized for anaerobic digestion and cell density 
determination. Before digestion, organic biomass was processed into Sample A and 
Sample B. Sample A is a mixture of chicken manure (4 kg), banana peels (0.5 kg) and 
water (7.5 kg) in a digester. Sample B is a mixture of chicken manure (7.5 kg) and 
water in equal proportions by weight, decomposed in a different digester. The two 
digesters were operated in batch mode, as described by [17]. 
 
Biomass and SC datasets 
Viable cells in samples A and B digesters were determined using hypothetical units- 
colony-forming units (CFU/mL) converted to SC in mg/L units. In microbiology and 
cell growth experiments, biomass means the viable cells counted in colonies, which 
stand as Ct from biomass. This determination was carried out by manual NA 
preparation. From the experiment onset, it was assumed that chicken manure 
contains microorganisms which are paramount to the anaerobic process [10]. Using 
a biomass-to-SC ratio of Y = 400, SC was determined using Eq. 1 [1] for samples A 
and B, respectively. 
 
 𝑆 = 𝑆 −

ିబ


 (1) 

 
Depletion of nutrients or feedstock by biomass during anaerobic fermentation, or the 
feedstock amount left at a particular time, are typified as S. In Eq. 1, X0 and S0 
represent initial biomass and SC, which are 899868717.4 and 4620000000 mg/L, 
(Sample A), and 15351147.09 and 9232210402.48 mg/L, respectively (Sample B). 
By convention, µ and S in Monod plots are often extracted from the growth phase of 
the microorganism acting on the samples. Hence, datasets for S and 𝜇 are inverted, 
initiating at S = 0 and 𝜇 = 0, before plotting Monod curve (Figs. 1 and 2 (b)). 
 

 
Figure 1: SGR against X and S (sample A). 
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Figure 2: SGR against X and S (sample B). 

 

RSM 
JMP® Trial 17.2.0 (701896), Serial Number:  T-VHFY3P0J09 was installed on 
Microsoft Windows 10 Pro (10.0.10240.0). The software was developed by JMP 
Statistical Discovery LLC, by Neil Hodgson (neilh@scintilla.org). Under DOE menu, 
and Classical drop-down menu, Response Surface Design was selected. For RSM 
analysis of Sample A and B, the response (µ), called SGR (h-1) was to be maximized. 
The specification of upper and lower limits of X and S factors is shown in Figs. 3 and 4. 
 

 
Figure 3: Sample A analysis -factor boundary values and response goal specification. 

 

 
Figure 4: Sample A analysis-factor boundary values and response goal specification. 
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Then, CCD-Orthogonal Design Type, over 16 runs and 8 center points, was chosen, 
and a randomized output option run order was selected. A table of the runs that was 
generated by JMP was then assessed for implementation. If the estimates of X and S 
given in the table are not realistic, those empirically obtained (Figs. 1 and 2) are 
entered after JMP proposed outcomes are deleted. 
 
Incorporating a NN design 
Using sets of empirical X, S and µ, which were used to visualize microbial growth 
via Figs. 1 and 2, NN was generated for µ outcomes. To do that, NN was selected 
under ‘Predictive Modeling’ drop-down arrow, under “Analyze” menu in JMP 
application. NN is a modern predictive modeling technique that predicts the 
response variable, using a flexible function of input variables (e.g., X and S). The 
respective factors and the response were then chosen, and a Random Seed of 0 was 
defined, to generate a reproducible sequence of random numbers, starting from 0. In 
Model Launch window, a Holdback Validation Method used to assess the 
performance of a trained model was selected. A default Holdback Proportion of 
0.333, referring to a fraction of the dataset reserved for validation/testing purposes, 
or a determinant of how the dataset is split into training, validation and test sets, 
were allowed, as conducted by [9]. Afterwards, 3 was entered as the number of 
hidden nodes, and the model was launched using ‘Go’ button. 
Expected results after the model run were: samples A and B dataset statistical 
parameter estimates; NN; prediction profiler model interpretation and sensitivity 
analysis representations; 3D surface profiles [16]; Actual by Prediction plots; a table 
containing formulas for the predicted response and hidden layers’ nodes; and SAS 
code that can be used to score a new dataset. Using prediction profiler, optimal 
settings for predictor variables that led to desired predicted outcomes were found, in 
order to optimize the process. Based on 40 experimental runs, JMP simulated 
several DOE for microbial growth process involving X, S and µ average estimates. 
 
Determination of microbial growth optimization parameters 
Parameters in basic microbial growth models were determined for observed datasets 
and NN model predicted values, by performing regression based on Monod 
equation. Predicted parameters were then assessed based on µ optimal prediction. 
 
Results and discussion 
Training/validation and statistical measure based on predicted µ 
A holdback validation method is a crucial technique for assessing and fine-tuning 
NN models, which helps to prevent overfitting, and ensure they generalize well to 
new and unseen data. A holdback of 0.333, as specified, implies that 66.7% of the 
data were allocated for training, while 33.3% was set aside for validation or testing. 
Commonly, the specific choice of the holdback proportion depends on the nature of 
the problem, the dataset size, and the goals of the machine learning experiment. In 
the regression analysis context, R2 is a metrics often used for training and validation 
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datasets [3, 13]. Higher R2 of 0.9888 and 1.0000 for training, and lower R2 of 0.9788 
and 0.9999 for validation, obtained for Samples A and B statistical metric (Table 1), 
respectively, indicated overfitting. 
 

Table 1: Sample A and B statistical model fitting predictions. 

Measure Sample A Sample B 
Training value Validation value Training value Validation value 

R2 0.9887916 0.9787637 1 0.9999999 
RASE 0.0002279 0.0004126 1.8517 x 10-7 4.8578 x 10-7 
Mean abs dev 0.0001933 0.0002962 1.5785 x 10-7 4.2239 x 10-7 
–Log likelihood -97.5472 -50.99224 -225.3291 -104.9486 
SSE 7.2715 x 107 1.3621 x 10-6 5.486 x 10-7 1.888 x 10-12  
Sum freq 14 8 16 8 

 

Overfitting occurs when the model is able to perfectly fit training data, but fails to 
generalize them to unseen data. In such cases, the model may capture noise and 
idiosyncrasies in training data, which results in high R2 value for training. When applied 
to validation dataset, the model performs poorly, resulting in lower R2 value. Viz-a-viz, 
higher R2 for validation and lower R2 for training are often a sign of underfitting. 
However, if R2 values for both training and validation are reasonably high and close to 
each other, as shown in Table 1, this indicates that the model is able to capture 
underlying patterns in the data without overfitting or underfitting [6]. SSE can be 
explained in terms of training and validation. Training SSE close to zero implies that the 
model is perfectly fitting training data, while lower validation SSE indicates better 
generalization. Clearly, results in Table 1 establish an ideal scenario, where validation 
SSE is reasonably close to the training one, for the respective samples, it shows that the 
model learnt underlying patterns in the data without overfitting. Similarly, lower 
training RASE of 0.0002279 (Sample A) and 1.8517 x 10-7 (Sample B), shows that the 
model predicted training data with smaller errors. 
MAD or MAE behavior, which quantifies how far predictions are from true values 
on average, is consistent whether one is looking at training or validation dataset. If 
R2 is high for training dataset, MAD will typically be lower on it (e.g., 0.0001933 
for Sample A). Alternatively, low R2 for validation dataset will result in higher MAD 
on validation dataset (viz. 0.0002962). As for equal R2 (dataset B), MAD’s estimates 
can be used to select models. In order to minimize prediction errors in practical 
applications where accuracy is crucial, lower MAD (i.e., 1.5785 x 10-7 for training) 
is suitable. Sum of frequencies show how many data points are present in each 
dataset, which is crucial in assessing reliability and generalizability of NN predictive 
model. Larger datasets (as in Sample B) are often beneficial for training more robust 
and accurate models. The difference itself in “Sum Freq” between training and 
validation datasets does not inherently indicate an issue. “Loglikelihood” is a term 
used to quantify how well a statistical model’s predictions match observed data, in 
which lower values (i.e., -97.5472 and -225.3291 for Samples A and B training, 
respectively) indicate a better fit. 
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Hidden layers’ structure 
In a NN, hidden nodes, as earlier specified in the methodology, are computational 
units that are part of hidden layers, which stand between input (X and S blue box) 
and output layers (𝜇 square box), as shown in Fig. 5.  
 

 
Figure 5: NN configuration for predicting 𝜇 from sample A and B datasets. 

 

Hidden nodes are responsible for processing input data and learning complex 
patterns and representations from them [2]. Hidden layers with 3 hidden nodes mean 
that this layer contains 3 computational units. The units in the green field circle 
containing ‘S’ symbol, as shown in Fig. 5, are called TanH [14]. 
Due to selected alike nodes, Fig. 5 is similar for samples A and B data. Changing the 
number of hidden nodes from 3 to 5 and 10, for Sample A dataset, will affect the extent 
of fit and R2 values [4, 11]. At hidden nodes of 3, 4 and 5, R2 values were: for training, 
0.9887916, 0.9678015 and 0.9926753; and for validation, 0.9787637, 0.9786579 and 
0.9786468. Initially, increasing hidden nodes number might lead to an improvement in 
R2 for training dataset, since a more complex model is able to learn intricate patterns on 
data. Further increase in nodes (to 10) will lead to overfitting, as the model starts to fit 
noise or random variations in training data, which results in artificially high R2. 
Likewise, increasing hidden nodes may, at first, improve R2 for validation dataset, 
because the model can capture more nuances in data. Nevertheless, if the model starts to 
overfit training data, R2 for validation dataset is likely to decrease. Generally, increasing 
the hidden nodes number can affect the dependent variable (µ) prediction. NN with 
more hidden nodes is computationally more complex, and it may require additional 
computational power and memory. What is called “black box” may occur [2], a 
situation in which it has signally became challenging to interpret how specific features 
or variables impact µ, due to more hidden nodes. 
 
Prediction profile under maximum desirability 
In JMP software, prediction profiler is a tool used for exploring and visualizing X and S 
effects on predictions made by a statistical model. It is particularly useful for 
understanding how changes in input variables (predictors) impact predicted outcome (µ) 
from the model. As portrayed in Figs. 6 and 7, desirability refers to a measure used to 
assess the overall quality of a set of predicted outcomes for a given set of input conditions 
or factors.  
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Figure 6: Predicted SGR from sample A under X and S values’ maximal desirability. 

 

In Fig. 6, a high desirability score of 0.994319 indicates that a combination of 
X = 899868717 mg/L and S = 4.62 x 109 mg/L led to optimal or desirable 
values of µ = 0.010201 h-1, which met the desired goal. This is because, when 
working with prediction profilers and desirability, the aim is to find factor 
settings or input conditions that maximize overall desirability score. 
Hence, in the same context, X = 15351147 mg/L and S = 9.2322 x 109 mg/L, which, at high 
desirability of 0.981835, is the desired combination for µmax of 0.007316 h-1 (Fig. 7). 
 

 
Figure 7: Predicted SGR from sample b under maximal desirability of X and S values. 
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Simulation experiment 
‘Simulation’ feature, under prediction profiler in JMP software, was used to perform 
Monte Carlo simulations, for predicting X and S values, and statistical properties: 
mean and SD of µ for 40 experimental runs (Tables 2 and 3).  
 

Table 2: JMP predicted experimental runs for sample A dataset. 

Run X 
(mg/L) 

S 
(mg/L) 

µ mean 
(h)   µ SD 

1 830648046.83 3968461538.50 0.008959737 1.21E-17 
2 819111268.40 2310000000.00 0.006560012 1.04E-17 
3 888331938.97 3613076923.10 0.008731199 1.21E-17 
4 784500933.12 4027692307.70 0.00881895 1.21E-17 
5 461471137.13 3316923076.90 0.00617417 1.65E-17 
6 634522813.55 3020769230.80 0.006670966 2.60E-18 
7 530691807.70 3790769230.80 0.007191932 1.04E-17 
8 484544693.98 3139230769.20 0.00605546 8.67E-18 
9 669133148.84 2783846153.80 0.006513329 1.73E-18 
10 449934358.70 2606153846.20 0.005140131 0 
11 611449256.69 4383076923.10 0.008428288 1.21E-17 
12 715280262.55 4501538461.50 0.009129081 2.43E-17 
13 599912478.27 4560769230.80 0.00860883 2.26E-17 
14 646059591.98 3198461538.50 0.006976319 1.73E-17 
15 703743484.12 3435384615.40 0.007595131 1.91E-17 
16 576838921.41 3080000000.00 0.006458603 1.73E-18 
17 807574489.97 4146153846.20 0.009096647 1.21E-17 
18 519155029.27 3909230769.20 0.007291284 1.73E-17 
19 876795160.54 2487692307.70 0.007076688 5.20E-18 
20 796037711.55 4620000000.00 0.009698155 1.56E-17 
21 772964154.69 2428461538.50 0.006513781 1.65E-17 
22 692206705.69 2369230769.20 0.006043987 1.56E-17 
23 565302142.98 2902307692.30 0.006153266 8.67E-19 
24 507618250.84 3257692307.70 0.006340537 1.04E-17 
25 588375699.84 4323846153.80 0.008225424 0 
26 865258382.12 4205384615.40 0.009456864 0 
27 542228586.13 2961538461.50 0.006115486 8.67E-18 
28 853721603.69 2665384615.40 0.007225682 6.07E-18 
29 473007915.56 3731538461.50 0.006800266 3.47E-18 
30 899868717.40 3553846153.80 0.008700551 1.21E-17 
31 657596370.41 4086923076.90 0.008263504 1.21E-17 
32 680669927.26 4264615384.60 0.008626408 1.21E-17 
33 622986035.12 3672307692.30 0.007514357 1.73E-17 
34 761427376.26 4442307692.30 0.009280284 1.21E-17 
35 553765364.55 2843076923.10 0.006011707 1.56E-17 
36 749890597.83 3376153846.20 0.007739604 1.13E-17 
37 496081472.41 3850000000.00 0.00708624 0 
38 842184825.26 2546923076.90 0.007003912 1.73E-17 
39 738353819.41 2724615384.60 0.006768006 1.04E-17 
40 726817040.98 3494615384.60 0.007792039 1.91E-17 

 
Higher number of runs provides more precise estimates of µ’s mean and SD. The 
relationship between µ and limiting S given in the tables, over 40 runs, can be 
described using Monod equation (Eq. 2), for a typical controlled microbial 
environment to which Samples A and B were subjected to. 
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 𝜇 =
ఓೌೣ ௌ

ೞାௌ
  (2) 

 
where µmax is maximum SGR, i.e., rate at which microorganisms can grow when S 
is not limiting, and Ks is half-saturation constant or S, at which µ is half of µmax. 
Since there are no estimates of µmax and Ks, to aid selecting an optimal design, a run 
with higher µ in Tables 2 and 3 may hint on X and S best combinations. Thus, 
Sample A dataset’s X = 899868717.4 mg/L and S = 4.62 x 109 mg/L (Table 2), at 
µmax = 0.009698155 h-1 below maximum desirability, as shown in Fig. 6. On the 
other hand, Sample B dataset’s X = 15351147.09 mg/L and S = 9232210402.5 
mg/L (Table 3), at µmax of 0.00728 h-1 below maximum desirability, as shown in 
Fig. 7, since estimates were not practically experimented and compared with the 
ones given by JMP. 
 

Table 3: JMP predicted experimental runs for sample B dataset. 

Run X  
(mg/L) 

S  
(mg/L) 

µ mean 
(h) µ SD 

1 14367099.20 7811870340.60 0.007152 5.67255E-16 
2 13776670.47 5562998575.90 0.006648 1.76074E-16 
3 12005384.26 8166955356.00 0.00713 6.65267E-16 
4 8856431.01 8640402043.30 0.007108 5.73326E-16 
5 8659621.44 7456785325.10 0.006924 1.04951E-16 
6 13383051.31 6864976965.90 0.006965 2.6975E-16 
7 11808574.69 5918083591.30 0.006676 4.25875E-16 
8 9053240.59 5089551888.50 0.006274 5.96745E-16 
9 12989432.15 6509891950.50 0.006875 6.24501E-16 
10 8266002.28 8877125387.00 0.007122 9.28077E-17 
11 7872383.12 8522040371.50 0.007069 1.08507E-15 
12 10627717.22 5326275232.20 0.006433 1.40599E-15 
13 10824526.79 8995487058.80 0.007193 1.1163E-15 
14 14170289.62 5799721919.50 0.006737 1.0365E-15 
15 15154337.51 7930232012.40 0.007191 1.97759E-16 
16 10234098.06 7575146996.90 0.006993 1.81105E-15 
17 8462811.86 7220061981.40 0.006873 2.09902E-16 
18 9250050.17 6154806935.00 0.006645 7.61544E-16 
19 11611765.11 5681360247.70 0.006596 7.31186E-16 
20 15351147.09 8758763715.20 0.00728 1.5786E-16 
21 13973480.04 4852828544.90 0.006397 1.7486E-15 
22 12595813.00 6273168606.80 0.006803 6.03684E-16 
23 13579860.89 5444636904.00 0.006601 8.92515E-16 
24 14957527.93 8285317027.90 0.007225 9.6971E-16 
25 13186241.73 6983338637.80 0.006982 1.81279E-15 
26 11414955.53 7101700309.60 0.006945 1.00614E-16 
27 12792622.58 8048593684.20 0.007137 2.09902E-16 
28 14563908.78 6628253622.30 0.006959 6.21031E-16 
29 12202193.84 7693508668.70 0.007071 1.39559E-15 
30 7675573.55 8403678699.70 0.007049 1.47452E-17 
31 9643669.33 4616105201.20 0.006094 1.44503E-15 
32 9446859.75 6746615294.10 0.006803 1.29931E-15 
33 14760718.36 6391530278.60 0.006914 4.42355E-17 
34 11021336.37 6036445263.20 0.006679 1.31319E-15 
35 12399003.42 9232210402.50 0.007249 1.13798E-15 
36 9840478.90 4971190216.70 0.00626 2.8276E-16 
37 10430907.64 4734466873.10 0.006184 1.5786E-15 
38 11218145.95 9113848730.70 0.007213 5.67255E-16 
39 10037288.48 7338423653.30 0.006945 1.3262E-15 
40 8069192.70 5207913560.40 0.006279 1.12497E-15 
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Surface profile 
Just as previously demonstrated by [11, 15], predictors’ (S and X) effect on the 
response can be simulated with NN model, and analyzed using 3D surface plots. 
Fig. 8 shows that µ increased gradually with X, before attaining µmax of 0.015 h-1, 
and then declined, after nutrients became low. Likewise, µ increased as S decreased 
and X rose, as shown in Fig. 9. 
 

  
Figure 8: Surface plot of X, S and 𝜇 showing patterns of changes in dataset A. 

 

 
Figure 9: Surface plot of X, S and 𝜇 showing patterns of changes in dataset B. 

 

Fitted plots and model equation command code 
In the specified fit, plot for training set with actual and predicted values on Y- and 
X-axes, respectively, and validation set are shown in Figs. 10 and 11. They are 
generated by JMP based on their number of data points or Sum Freq. or counts given 
earlier in Table 1. 
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Figure 10: (a)- Actual vs. predicted correlation based on dataset A. 

 

 
Figure 11: Actual vs. predicted correlation based on dataset B. 

 

Under training linear fitting plots in both figures, random data splitting process 
instigates more data points, to end up in the training dataset by chance. As 
previously described, MAD and R2 are complementary metrics. High and low R2 
often correspond to lower and higher MAD, indicating better and worse model fits, 
respectively (Fig. 10a and b). Fig. 11, for chicken manure model fitting of µ, shows 
that R2 values for training and validation datasets are equally high (Table 1). This 
suggests that the model performed well in terms of explaining the variance in the 
target variable, and generalized effectively to unseen data [9]. This is actually a 
positive sign. However, if precise and accurate predictions are the analysis’ priority, 
the training model with less errors (SSE = 5.486 x 10-13) should be chosen based on 
its lower MAD. A model with higher MAD (validation) should be selected if one 
wishes more sensitivity to potential outliers or extreme cases. Another reason for 
better fit in both training graphs is that their negative log-likelihoods are lower, 
while higher values in validation plots suggest poorer fit [7]. 
Figs. 12 and 13 depict Ntan(H) model equations for 3 hidden layers. Notably, [13] 
utilizes 2 hidden layers and both neural and fuzzy logic to optimize biogas yield 
from datasets of two reactor setups TanH function’s advantage is that it is nonlinear, 
allowing to map more intricate functions and stack layers, and to obtain high 
precision [14]. 
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Figure 12: Model equation of 𝜇 for sample A dataset. 

 

 
Figure 13: Model equation of 𝜇 for sample B dataset. 

 

Experimental versus predicted 𝝁 datasets 
In samples A and B (Figs. 14 and 15), increased µ means microbial growth 
faster rate, which rapidly depletes S, as it further consumes the substrate. In that 
case, µ in Monod equation represents microbial growth in relation to limiting S. 
Predicted values (Figs. 14 and 15), using model equations in Figs. 12 and 13, 
showed almost 100% fit demonstrated by the earlier shown plots. When 
regression was performed using OriginPro 2018 software, µmax and Ks values 
obtained for experimental and predicted samples were almost equal (Table 4). 
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Although model equation for predicted µ of A dataset indicated that it was 
reliable, resulting in values of µmax = 0.00997 h-1 and Ks = 9.12975 x 107 mg/L 
(0.01 h-1 and 9.498595 x 107 mg/L), the same parameters estimated for 
experimental results gave the best combination, coupled with their 
corresponding X and S based on maximal desirability. Model equation for 
Sample B accurately mimicked Eq. 2, since it gave 100% equal experimental 
and predicted µmax and Ks (0.00762 h-1 and 3.838 x 107 mg/L, respectively) 
values and suitable chicken manure data (Fig. 13). These parameters, along with 
X and S maximal desirability (Fig. 7), indicate that Sample B study was the 
optimal combination. 
 

 
Figure 14: Sample A’s experimental dataset and predicted SGR. 

 

Constant "H" in Figs. 14 and 15, as herein mentioned, likely represents a parameter 
in model equations used for predicting µ of microorganisms based on X and S input 
variables. Positive "H" constant may suggest that certain conditions or factors it 
represents have a stimulatory effect on microbial growth, and indicate a direct 
relationship with µ, meaning that they increased together. Conversely, negative "H" 
constant may imply inhibitory factors or conditions that negatively impact microbial 
growth, which indicates an inverse relationship with µ. In this case, as "H" value 
decreased, µ increased.  
Parameters, such as µmax and Ks allow scientists to predict how fast microbial 
growth is under specific nutrient Ct. It is quite important in this study, since µ 
specifically impacts biogas generation, when Sample A or B are used, with their 
associated production rates.  
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Optimization of S in their respective bioreactors to maximize microbial growth is 
aided with the knowledge of these parameters. In the Monod equation, an increase in 
µmax would lead to a higher 𝜇 that can be achieved under optimal conditions. An 
increase in µmax implied higher microbial growth potential, which could lead to 
faster substrate consumption and, consequently, a decrease in S, over time [1]. 
 

 
Figure 15: Sample B’s experimental dataset and predicted SGR. 

 

Table 4: Statistics and estimated Monod parameters. 

Sample A Sample B 

Experimental Predicted Experimental Predicted 
Number of points 22 22 24 24 
Degrees of freedom 20 20 22 22 
Reduced chi-square 4.98155E-12 1.01704E-07 1.06662E-19 4.54345E-14 
Residual sum of squares 9.46310E-11 2.03408E-06 2.34655E-18 9.99560E-13 
R2 (COD) 1 0.98769 1 1 
Adj. R2 1 0.98707 1 1 
Fit status Succeeded (100) Succeeded (100) Succeeded (100) Succeeded (101) 
µmax (h-1) 0.01 0.00997 0.00762 0.00762 
Ks (mg/L) 9.49859E + 07 9.12975E + 07 3.838E + 08 3.83747E + 08 

 

Conclusion 
R2 values near or equal to 1, obtained on training and validation sets, show that TanH 
neural models for Samples A and B datasets correctly predicted µ. Under 99.43% 
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desirability score, µmax of 0.01 h-1 and Ks of 9.498595 x 107 mg/L, the combination of 
X and S (899868717 mg/L and 4.62 x 109 mg/L, respectively), for optimal µ of 
0.010201 h-1, was valid for Sample A’s experimental observations. Estimated Monod 
parameters for µmax and Ks (0.00762 h-1 and 3.838 x 107 mg/L, respectively), based on 
98.18% desirability for X and S (15351147 and 9 x 109 mg/L), made optimal 
microbial growth condition that resulted in maximum µ of 0.007316 h-1, which was 
valid for Sample B empirical and predicted outputs. Overall, Sample B’s anaerobic 
chamber produced higher biogas yields that those from Sample A’s bioreactor. This 
was due to exact R2 and kinetic parameter values obtained for experimental and 
forecasted 𝜇. In future researches, neural predictive modeling of two datasets, 
employing linear and Gaussian representative models, can be run using JMP, of which 
outcome may be compared with estimates in this study and with the created TanH 
equation. In addition, hidden nodes variation may improve R2 estimation and 
predicted values, especially for Sample B estimates, which still falls below observed 
variables and obtained parameters. Applying advanced statistical tools like JMP and 
NN allows for data-driven decision making, which can result in optimized process 
parameters and improved waste-to-resource conversion. 
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