Search results for:
Pages: 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38
Electrosynthesis and Characterization of 2, 3, 6, 7, 10, 11-Hexadecahexoxytriphenylene
Read Abstract
by A. Laguna, R. Ortíz, E. Weinhold
285-291
DOI:
2,3,6,7,10,11-hexadecahexoxytriphenylene was synthesized by electrochemical oxidation of 1,2-didecahexoxybenzene in dichloromethane-tetrabutylammonium tetrafluoroborate (TBATFB) on platinum electrode. A green, adherent, insoluble deposit was grown on the Pt electrode surface. The deposit was isolated and characterized using Fourier Transform Infrared (FTIR) Spectroscopy and Nuclear Magnetic Resonance (NMR). The results suggest that the deposit shows a decahexoxy triphenylene structure, associated to the anion of the supporting electrolyte.
A New Formulation of the Frequency Factor in the Expression for the Rate Constant of Interfacial Charge Transfers
Read Abstract
by J. G. Velasco
293-318
DOI:
A new way for deriving the fundamental equation of the electrochemistry has been developed in the potential range in which Butler-Volmer behaviour is found. In this approach the frequency factor is considered to be a function of the potential instead of the activation energy. The frequency factor is calculated by means of a classical statistical mechanics treatment giving rise to a new definition for the symmetry factor. A new expression for the standard rate constant in adiabatic heterogeneous charge transfer reactions has been derived.
Oil Soluble Corrosion Inhibitor on Microbiologically Influenced Corrosion in Diesel Transporting Pipeline
Read Abstract
by N. Muthukumar, S. Maruthamuthu, S. Mohanan, N. Palaniswamy
319-334
DOI:
The effect of oil soluble commercial corrosion inhibitors (OSCI) on the growth of bacteria and its corrosion inhibition efficiency were investigated. Corrosion inhibition efficiency was studied by rotating cage test and the nature of biodegradation of corrosion inhibitor was also analyzed by using FTIR, NMR and GC-MS. This isolate has the capacity to degrade the aromatic and aliphatic hydrocarbon present in the corrosion inhibitors. The degraded products of corrosion inhibitors and bacterial activity determine the electrochemical behaviour of API 5LX steel. The influence of bacterial activity on degradation of corrosion inhibitor and its influence on corrosion of API 5LX have been evaluated by employing weight loss techniques and electrochemical studies. The present study also emphasizes the importance of evaluation of oil soluble corrosion inhibitor in stagnant model (flow loop test) and discusses the demerits of the oil soluble corrosion inhibitors in petroleum product pipeline.
Cyclic Voltammetric Investigation on the Catalysis of Electrodeposited Manganese Oxide on the Electrochemical Reduction of Oxygen (ORR) in Room Temperature Ionic Liquids (RTILs) of 1-Ethyl-3-Methylimidazolium Tetrafluorobroate (EMIBF4) on Glass Carbon (GC) Electrode
Read Abstract
by K. Ding, Q. Wang, M. Zhao
335-348
DOI:
In this preliminary work, for the first time, the electrochemical oxygen reduction reaction (ORR) was investigated using cyclic voltammetry (CV) on the electrodeposited manganese oxide (MnOx)-modified glass carbon electrode (MnOx-GC) at room temperature ionic liquids (RTILs) of EMIBF4, i.e., 1-ethyl-3-methylimidazolium tetrafluorobroate (EMIBF4). The results demonstrated that, after being modified by MnOx on GC, the reduction peak current of oxygen was increased to some extent, while the oxidation peak current, corresponding to the oxidation of superoxide anion, O2-, was attenuated in some degree, suggesting that MnOx catalyzed ORR in RTILs of EMIBF4, which is consistent with the results obtained in aqueous solution. To accelerate the electron transfer rate, multi-walled carbon nanotubes (MWCNTs) were modified on GC, and then MnOx was electrodeposited onto the MWCNTs-modified GC electrode to give rise to the MnOx /MWCNTs–modified GC electrode; consequently, the improved standard rate constant, κs, originated from the modified MWCNTs, along with the modification of electrodeposited MnOx, showed us a satisfactory electrocatalysis for ORR in RTILs of EMIBF4. In addition, not only for the MnOx-modified GC but also for the MnOx/ MWCNTs-modified GC, there is a novel small oxidation peak appearing at –0.2 V vs. solid Ag/AgCl, implying that the catalysis of MnOx for ORR in EMIBF4 is somewhat different from that observed in aqueous solution, though the exact interpretation is not achieved in this preliminary work. Initiating the catalysis of MnOx on ORR in RTILs is the main contribution of this work. Further discussions are in progress.
Electrogeneration of Poly-N-Methylpyrrole Tosylate Doped Films. Electrochemical and Morphological Study
Read Abstract
by M. J. González-Tejera, G. H. Martín
349-361
DOI:
In order to investigate the electrochemical behaviour and morphology under different experimental conditions of poly-N-methylpyrrole doped with sodium p-toluensulphonate (NaTsO) in aqueous medium, the doped polymer was potentiostatically synthesized at four potential values: 0.6, 0.8, 0.9 and 1.0 V. The morphological study reveals a compact texture in these polymeric films; after being submitted to a positive potential those films were wrinkled. Cyclic voltammetry was used to characterize polymer films (pNMPy/TsO). The corresponding voltammograms revealed a reversible doping/de-doping process in those films obtained at ηp = 0.8 V. Different parameters such as: negative potential limit (Ei), positive potential limit (Ef), sweep rate (v) and continuous cycling were varied.
Mono Azo Dyes Compounds as Corrosion Inhibitors for Dissolution of Aluminium in Sodium Hydroxide Solutions
Read Abstract
by S. S. Al-Juaid
363-373
DOI:
The effect of some mono azo dyes compounds on the dissolution of aluminium in 0.01 M NaOH solutions was studied using weight loss and galvanostatic polarization techniques. The percentage inhibition efficiency was found to increase with increasing concentration of inhibitor and with decreasing temperature. The inhibition mechanism was discussed on the basis of the formation of complex compound adsorbed on the metal surface. The adsorption process follows Frumkin isotherm. The effect of temperature on the rate of corrosion in the absence and presence of these compounds was also studied. Some activated thermodynamic parameters were computed.
A Novel Potentiometric Sensor for the Determination of Nimesulide
Read Abstract
by K. G. Kumar, P. Augustine, S. John
375-381
DOI:
A novel electrochemical sensor has been developed for the determination of nimesulide. The sensor is based on the NIM- molybdophosphoric acid (MPA) as the electroactive material in PVC matrix in presence of bis(2-ethyl hexyl) phthalate (BEP) as a plasticizer. The sensor showed a fast, stable, near Nernstian response for 1 10-2 –1 10-6 M NIM over the pH range 5 – 8 with a slope 55.6 0.5m V/decade and the response time is < 45 s. Selectivity coefficient data for some common ions show negligible interferences. The sensor was successfully applied for the determination of NIM in tablet and the results obtained are in good agreement with those obtained by the official method.
Amperometric Detection of Nitrite on Glassy Carbon Electrode Modified with Cobalt Nitroprusside
Read Abstract
by R. E. Sabzi
383-390
DOI:
The glassy carbon electrode (GCE) modified with cobalt nitroprusside (CoNP) was prepared by electrochemical method. The CoNP modified electrode (ME) prepared electrochemically on a GCE in two-step. The electrochemical behavior of the modified electrode was studied by cyclic voltammetric technique. The cyclic voltammogram of CoNP showed a redox couple with formal potential [E0 =(Epa+Epc)/2] of 500 mV vs. SCE. The electrocatalytic oxidation of nitrite was studied on the CoNP modified glassy carbon electrode. The CoNP films on the glassy carbon electrode show an excellent electrocatalytic activity toward the oxidation of nitrite in 0.5 mol L-1 KNO3. Hydrodynamic amperometry was used to the detection of nitrite with CoNP. The linear detection limit of the CoNP elctrode for NO2- was from 20×10-6 to 220×10-4 mol L-1 and the detection limit was 10×10-6 mol L-1 (S/N=3).
Design Bases for Modulated Complexation by Electrochemistry
Read Abstract
by J. O. Sánchez, P. R. Tejeda
185-194
DOI:
The treatment of liquid organic phases to remove undesirable compounds is currently a priority in different industries. In oil refinery, it is necessary to reduce sulphur compounds, in gasolines, to below 50 ppm.The traditional form is catalytic hydrodesulphuration; however, this system is not effective for some compounds, e.g., alkyl substituted dibenzothiophenes.
The processes for modulated complexation by electrochemistry are based on the capacity of a complexing agent, in a certain oxidation state, to form a bond with the molecule to be removed from a liquid phase. If the contaminant, the solute, is in an organic phase, the complexant must be soluble in aqueous phase. When the complexant is formed and in contact with both phases the contaminant is extracted. In a second stage, the complexing agent is oxidized (or reduced) to a state of less affinity to the contaminant, and the aqueous phase is placed in contact with a new organic phase where the contaminant will be discharged and concentrated. The complexant agent in aqueous phase is reduced (or oxidized) to its state of higher affinity for the contaminant and recirculated to the extraction stage.
In this work, we present the conditions necessary for this process to be feasible, the criteria for the selection of the complexes, the methodology for matter balances, determination of energy consumption and thermodynamic calculations, and also three examples of an organic phase: dibenzotiophene, pyridine, and methyl thioether, using as complexing agent iron tetrakis-(p-sulphonatophenyl) porphyrin.
Corrosion Resistance of Mo3Si with Niobium Additions in Hydrochloric Acid
Read Abstract
by C. Huicochea, I. Rosales, I. E. Castañeda, J. Uruchurtu
195-204
DOI:
In the present work, the electrochemical behavior of molybdenum-silica-niobium alloy produced by arc cast technique is presented, keeping silica constant (at 24 wt %), using different niobium concentrations ( 5, 10, 15 & 20 wt %) as alloying elements. These samples were immersed in an electrochemical solution of 10 % by volume hydrochloric acid. The corrosion behavior was obtained using electrochemical techniques, namely: open circuit potential, polarization curves and electrochemical current noise. The potential behaviour as a function of time allows to determine the activity of the alloy as a function of its content, the polarization technique was used to obtain characteristic electrochemical parameters and the electrochemical current noise the type of attack while comparing them with the corrosion surface morphological features. Surface images showed different corrosion morphologies, being the most attacked the sample without niobium additions. It was found that niobium additions result in a better corrosion resistance when its concentration is increased in the alloy.
by A. K. Dubey, G. Singh
205-219
DOI:
The corrosion inhibition of mild steel in one normal sulphuric acid solution by brij-30 has been studied in relation to the concentration of the inhibitor as well as the temperature using electrochemical polarization (galvanostatic and potentiostatic) techniques. The results were supplemented with scanning electron microscopy and infra-red spectroscopy. All the methods employed are in reasonable agreement. There is no particular relationship of inhibition with concentration and temperatures. The thermodynamic functions of dissolution and adsorption processes were calculated from experimental polarization data and the interpretation of the results is given. Adsorption of Brij-30 was found to follow the Langmuir’s adsorption isotherm. Brij-30 is a mixed type of inhibitor.
Corrosion Inhibition of Mild Steel in Sulphuric Acid Solution by Using Polyethylene Glycol Methyl Ether (PEGME)
Read Abstract
by A. K. Dubey, G. Singh
221-235
DOI:
The corrosion inhibition of mild steel in one normal sulphuric acid solution by PEGME has been studied in relation to the concentration of the inhibitor as well as the temperature using electrochemical polarization (galvanostatic and potentiostatic) techniques. The results were supplemented with scanning electron microscopy and infra-red spectroscopy. All the methods employed are in reasonable agreement. There is no particular relationship of inhibition with concentration and temperatures. The thermodynamic functions of dissolution and adsorption processes were calculated from experimental polarization data and the interpretation of the results is given. Adsorption of PEGME was found to follow the Langmuir’s adsorption isotherm. PEGME is a mixed type of inhibitor.
Pitting Corrosion of Some Stainless Steel Alloys Preoxidized at Different Conditions
Read Abstract
by S. S. Mahmoud, M. M. Ahmed
237-248
DOI:
The pitting corrosion of some stainless steel alloys (preoxidized at different conditions) in 3.5% NaCl solution was studied. The alloys are: one ferritic (15.05% Cr) (alloy1) and two austenitic stainless steel alloys (17.9% Cr,7.08% Ni) (alloy2) and (20.45% Cr, 8.3% Ni) (alloy3). Potentiodynamic anodic polarization and galvanic current-time measurements were used in these investigations. The susceptibility of the alloys to pitting corrosion decreases with the increase of chromium content of the alloy and with the presence of nickel in the alloy. The preoxidation of the alloys in different media improves their resistance to pitting corrosion in NaCl solution. The resistance to pitting corrosion for the investigated alloy increases according to the order: no oxidation < oxidation in air < oxidation in molten alkali nitrates < oxidation in molten alkali carbonates. This resistance to pitting corrosion may be due to the formation of a protective oxide film on the alloys’ surface. The composition of this film greatly depends on the chemical composition of the alloy, on the condition of the preoxidation process, and on the temperature.
Corrosion Inhibition of Mild Steel by Using Cetyl Pyridinium Bromide (CPB)
Read Abstract
by A. K. Dubey, G. Singh
249-262
DOI:
The corrosion inhibition of mild steel in one normal sulphuric acid solution by CPB has been studied in relation to the concentration of the inhibitor as well as the temperature using electrochemical polarization (galvanostatic and potentiostatic) techniques. The results were supplemented with scanning electron microscopy and infra-red spectroscopy. All the methods employed are in reasonable agreement. There is no particular relationship of inhibition with concentration and temperatures. The thermodynamic functions of dissolution and adsorption processes were calculated from experimental polarization data and the interpretation of the results are given. Adsorption of CPB was found to follow the Langmuir’s adsorption isotherm. Brij-30 is a mixed type of inhibitor.
Capacitance of the Double Layer at Polycrystalline Au-Ag Electrodes: Influence of Preparation Technique and Specific Anion Adsorption
Read Abstract
by A. Hammadi, M. Berd
263-271
DOI:
We present electrochemical impedance spectra made on gold alloy containing 30% silver electrodes of various roughnesses in aqueous perchlorate acid solution as supporting electrolyte in the absence and in the presence of mM of specifically adsorbed halide ions X (X = Br-, Cl-, I-), at potentials where the dominant electrode process is the adsorption of the above anions. Efforts were mainly concentrated on the importance of surface preparation technique of the electrode and its influence on impedance spectra. Atomic scale inhomogeneities are introduced by mechanical treatment and can be decreased by annealing. Due to the annealing the double layer behaves as (almost) an ideal capacitance in the absence of specific adsorption though the surface roughness remains the same. A study of the related impedance behaviour in the presence of adsorbates even at very low concentrations (10-4 M), revealed capacitance dispersion increasing with the extent of specific anion adsorption at the gold/silver surface.
by J. Torrent-Burgués
273-283
DOI:
Nucleation models have been tested using reported experimental nucleation data in several systems dealing with electrocrystallization from aqueous solutions, and with a wide range of supersaturations or overpotentials. The critical nucleus size has been calculated and the results obtained with the classical and atomistic models have been compared and discussed. In order to compare these values with those occurring in crystallization, the values of the critical nucleus size for several crystallization systems have also been calculated, and then compared and commented.
Editorial: Special Issue on the IX Iberic Meeting of Electrochemistry
Read Abstract
by Enric Brillas, Manuel E. Sastre (Guest Editors)
i-ii
DOI:
Electrochemical Advanced Oxidation Processes (EAOPs) for Environmental Applications
Read Abstract
by M. A. Oturan, E. Brillas
1-18
DOI:
Conventional processes for water treatment are inefficient for the remediation of wastewaters containing toxic and biorecalcitrant organic pollutants. A large number of advanced oxidation processes (AOPs) have been successfully applied to degrade pollutants present in waters. These methods are based on the generation of a very powerful oxidizing agent such as hydroxyl radical (·OH) in solution, able to destroy organics up to their mineralization. In recent years new AOPs based on the electrochemical technology are being developed. Electrochemical advanced oxidation processes (EAOPs) are environmentally friendly emerging methods for the decontamination of wastewaters contaminated with toxic and persistent herbicides, pesticides, chlorophenols, nitrophenols, polychlorinated biphenyls, pharmaceuticals, etc. This paper reports the fundamentals, main characteristics and recent developments of EAOPs such as anodic oxidation and electro-Fenton alone and coupled with other physicochemical processes. These techniques utilize electrolytic systems such as three-electrode divided and two-electrode undivided cells with different cathodes as working electrodes (carbon-felt or O2-diffusion cathode) and auxiliary electrodes (Pt, PbO2, boron-doped diamond (BDD) or iron anode). The effect of several experimental parameters that largely influence the degradation rate of organic pollutants is discussed. Chromatographic analyses and total organic carbon (TOC) and chemical oxygen demand (COD) measurements show a quick disappearance of initial pollutants and their aromatic and aliphatic reaction products in all cases. The great capacity of oxidation and/or mineralization of all these EAOPs to decontaminate acidic aqueous solutions of common herbicides and pesticides is described.
Mineralization of Drugs in Aqueous Medium by Advanced Oxidation Processes
Read Abstract
by J. A. Garrido, E. Brillas, P. L. Cabot, F. Centellas, C. Arias, R. M. Rodríguez
19-41
DOI:
At present chemical (AOPs) and electrochemical (EAOPs) advanced oxidation processes with ability to destroy organic pollutants in waters are being developed. These methods are based on the production of hydroxyl radical (•OH) as oxidant. In AOPs •OH radical can be obtained from Fenton’s reaction between Fe2+ and H2O2 added to the medium, photoreduction of Fe3+ species or reaction between ozone and Fe2+. In EAOPs this radical is formed from water oxidation on the surface of a high O2-overvoltage anode and/or Fenton’s reaction between Fe2+ added to the medium and H2O2 electrogenerated at the cathode by the two-electron reduction of oxygen. The present work reports the mineralization of several aromatic drugs such as paracetamol, ibuprofen, clofibric acid and salicylic acid by AOPs based on ozonation catalyzed by Fe2+, Cu2+ and/or UVA light and EAOPs like anodic oxidation, electro-Fenton and photoelectro-Fenton, which are environmentally friendly electrochemical methods. For the latter processes, the drug decay with time and the evolution of aromatic intermediates and generated carboxylic acids are studied. Anodic oxidation is only effective when a boron-doped diamond (BDD) anode is used, whereas the photoelectro-Fenton process with Fe2+, Cu2+ and UVA light is the most potent method to completely destroy the drugs. The combined use of catalysts Fe2+, Cu2+ and UVA light in catalyzed ozonation also leads to overall decontamination of drug solutions.
Electrostatic Effects in Biosorption. The Role of the Electrochemistry
Read Abstract
by P. Lodeiro, J. L. Barriada, R. Herrero, M. E. Sastre de Vicente
43-54
DOI:
Biosorption is the passive sequestration of pollutants by non-metabolizing non-living biomass. The technique emerged in 1980’s as a possible alternative method for wastewater treatments in an environmentally friendly manner. In this paper it is shown that a basic research in biosorption processes is closely related to the field of Electrochemistry according to the conceptual division of this area in Ionics and Electrodics.