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Abstract 
In 2007, a study was done using color corona spectral analysis [39]. The method was 
applied in laboratory conditions with the coronal glow of biological objects and liquids. 
A high voltage of 12 kV and a frequency of 15 kHz have been applied during the 
research. In 1995, Antonov created the apparatus for the study, with registration in black 
and white photographic films. The scientist called the method selective high-frequency 
discharge. It has been categorized as silverless photography. In the presence of electrical 
conditions, electrography is at the heart of the photocopier invention. Herein, CaCO3 in 
a distilled H2O solution was tested. Comparative analysis was performed with distilled 
H2O. Physical and chemical processes under high-frequency corona gas discharge 
conditions were analyzed. CaCO3 was in dynamic interaction with CO₂ and H2O at the 
boundary of different environments. 
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Introduction 
Corona gas discharge produces a typical glow on devices with a 5 to 30 kV 
voltage and frequencies from 10 to 150 kHz [1]. In 1949, [2] received a patent 
for a “Method for obtaining photographic pictures of different types of objects”. 
The method of selective electric discharge allows for a dielectric medium to 
record information on another that is in contact with it. It is based on electric 
discharge at normal atmospheric pressure in a three-layer condenser: dielectric-
air gap-dielectric [3, 4]. A constant and controllable by-force electric field is 
created in it. In certain places where the electric field surprises the breakdown 
value of the field in the air gap, a perforation in the last one occurs. Pashen’s law 
[5] describes this phenomenon as: 
 
 VB = f(pd)  (1) 
 
VB depends on p and d. 
Due to perforation, electric discharge is selectively remitted on the recording 
electric medium.  
In 1965, [6] has published an electrophotography book with corresponding 
technology for directly capturing corona discharges from biological objects, 
                                                           
 The abbreviations and symbols definitions lists are on pages 121-122. 
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especially around larger contact surfaces. Electrophotography is by far the most 
significant of all the reprographics technologies for photocopying and laser/LED 
printing. 
In 1975, [7] have described the gas discharge effect with copying on the 
photographic photo film as electrophotography. 
Since 1960, [8, 9] have developed electrophotographic methods for images 
registration.  
In 1968, [4] has developed a method for gas discharge photography. [10-18] have 
also made researches in this area. During the process, in the ionization zone, sliding 
discharge develops on a dielectric surface powered by a non-uniform electric field 
near an electrode with a small curvature radius. The small gap thickness between 
the experimental object and the electrode ranges from 10 to 100 µm.  
Experimentally, the gas discharge effect gives information on the electric field 
distribution in the air gap between the object and the registering medium during the 
discharge [1, 19-21]. Ions of N, O, CO₂ and free electrons form the discharge itself. 
The free electrons are separated from N2, O2 and CO2 molecules, which generate 
gas discharge between the studied object and the electrode [22-24].  
Research has focused on analyzing an insight conclusion about digital analysis 
on the corona gas discharge spectrum, by introducing a pre-processing procedure 
to extract the texture effects as the radiation energy signature based on its most 
significant glow (digitally imaged isolines), which is used for medical biometric 
and disease interpretations [25]. 
During corona gas discharge in the atmosphere, there is a process of CO3

- 
formation [26]. When CaCO3, H2O and CO2 are combined, the following reaction 
is observed [27]. 
 
 СаСО3+ H2O + СО2 = Ca(HCО3)2  (2) 
 
[28] have developed a gas discharge photography method that that described the 
reaction as: 
 
 СаСО3+ HOH + СО2 = Ca(HCО3)2  (3) 
 
Falk has shown that HOH bending is fundamental for solids and liquids [29]. 
CaCO3 has the most extensive local extremums at 873 [30] and 1457 cm-1 [31]. 
Studies employing NES and DNES [33-35] methods with 873 cm-1 were made 
for cave water [32], the environment process [36] and plants with Ca2+ [36, 37]. 
The present investigation aimed to prove that, in coronal gas discharge 
conditions, there is an activation of the separated photons processes for CaCO3 

ions and H2O reactions. 
 
Materials and methods  
Device for color coronal spectral analysis  
Gas discharge emission for color coronal spectral analysis [1, 21, 23, 37, 38] was 
investigated in a dark room. It was registered with a photosensitive paper or color 
film placed on transparent Hostaphan electrode with an 87 mm diameter. It was 
filled with a conductive liquid composed of a 1% NaCl solution in deionized 
H2O. Herein, the 1% solution was made from CaCO3. Investigated objects (H2O 
drops and human thumbs) were placed on the corresponding photosensitive 
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material. Pulses with 12 kV voltage and a carrier frequency of 15 kHz were 
applied between the objects and the electrode Cu coating. 
The functional scheme of gas corona discharge device is shown in Fig. 1. 
 

 
Figure 1: Functional scheme of gas corona discharge device. 

 

Corona gas discharge was generated in the gap between the investigated objects 
and the transparent electrode, producing a characteristic glow around the contact 
area. Its electromagnetic emission, which ranged from 380 to 495 nm and 570 to 
750±5 nm, illuminated the corresponding photosensitive material, according to 
the objects specific properties (Fig. 2) [39].  
 

 
Figure 2: Transparent electrode with 87 mm diameter made of Hostaphan and filled 
with conductive liquid (1% CaCO3 in a distilled H2O solution). 
 

Color images produced by visible, UV and IR radiation were processed and 
analyzed with a dedicated software package. Measured spectral characteristics 
were calculated in eV. 
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FTIR 
IR-spectra of CaCO3 were registered on a Brucker Vertex (“Brucker”, Germany) 
FTIR (spectral range: average IR- 370 ÷ 7800 cm-1; visible- 2500 ÷ 8000 cm-1; 
permission- 0.5 cm-1; accuracy of ṽ - 0.1 cm-1 on 2000 cm-1) and Thermo Nicolet 
Avatar 360 FTIR spectrometers. 
 
NES and DNES methods 
θ was measured with a specially designed instrument, which has been described in 
detail by [40-43]. H2O drops evaporation was performed in a sealed chamber with 
a stable temperature of 22 ºC and humidity from 65 to 70% [40, 43] (Fig. 3). The 
drops were placed on a 350 µm thick BoPET sheet. 
 

 
Figure 3: Operating principle of the method for measuring the liquid drops θ on a hard 
surface: 1- drop, 2- thin Maylar sheet, 3- glass plate and 4- refraction ring width.  
 

θ is a function of a and d1. 
The device had the following technical features: monochromatic filter with λ of 
580±7 nm; H2O evaporation angle ranging from 72.3 to 0 deg; measured range 
of hydrogen bonds energy among H2O molecules was λ = 8.9 ÷13.8 µm or E = -
0.08 ÷ -0.1387 eV. 
Luck has considered that, in H2O,  hydrogen bonds exist between H atom of one 
H2O molecule and O of another [44]. Most of them are bound by the connection 
energy (-E) and the remaining are free (E = 0). It is accepted that E has a 
negative value. This is known as Luck’s two-state model [45-48]. The number of 
hydrogen bonds between H atom of one H2O molecule and O of another in a 
volume of H2O is twice as high as the number of molecules it contains.  
Part of the hydrogen bonds is restructured in the proximity of the drop surface 
spherical part and which produces dependence between δ and hydrogen bond 
energy [49-51]. 
 
  δ = -kTIln[(1+α)/(e-E/kT + α)]  (4) 
 
where k is Boltzmann constant, E is hydrogen bond energy, α is the ratio of the 
phase space two sub-volumes related to hydrogen bonds (α = 28±8) structuring 
and restructuring, and I (5.03.1018 m-2) is H2O molecules density in the 
hydrophobic surface layer. E and α values were determined by comparison with 
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the experiment. Expression (4) explains fraction C as δ = Cγ [50]. According to 
[43, 50], non-hydrogen bond interaction contribution amounts to 20% of γ and C 
real value (= 4/5). Considering Helmholtz free surface energy: 
 
  F = γΣ  (5) 
 
where Σ is the drop surface spherical part [43]. 
At the instant of mechanical equilibrium, F should be minimal, i.e., dF = 0 
= d(γΣ) [43]. 
 
 0 = γΣ - γ0Σ0  (6) 
 
H2O drops forced evaporation process occurs at a constant temperature of 20 ºC 
in a hermetic camera [40].   
Expressions for Σ0 and Σ are as follows [43]: 
 
  Σ = πD2/2(1 + cosθ); Σ0 = πD2/2(1 + cosθ0)  (7) 
 
  -E/kT = Cγ/IkT  (8) 
 
  E = Cγo(1 + cosθ)/I(1 + cos θ0)  (9) 
 
During the process, θ changes in discrete steps and characterizes hydrogen bonds 
average E as follows: 
 
  θ = arccos(-1 + bE)  (10) 
 
  b = I(1 + cos θ0)/Cγo (11) 
 
where b is a temperature-dependent parameter [52, 53]. The employed 
methods were NES and DNES [53-55]. They are used for research on natural 
waters [37, 53, 55], plants [35] and blood serum [56]. Molecular dynamics 
simulation was applied to investigate H2O droplets wetting behavior on the 
sandstone surface under different salinities. The system equilibrium 
configuration was used for studying the interaction of its components. The 
number of hydrogen bonds was calculated [57, 58]. E of hydrogen bonds 
among H2O molecules in H2O samples is measured in eV. A non-equilibrium 
evaporation process of H2O droplets characterizes f(E) of H2O. NES is 
measured in еV-1. DNES is defined as the difference [53-55]:  
 
  Δf(E) = f(H2O sample) - f(control sample)  (12) 
 
DNES is measured in еV-1, where f (*) denotes evaluated E [50-54]. 
 
Results 
Parameters of 1% CaCO3 in a distilled H2O solution obtained by color coronal 
spectral analysis  
Electric discharge per unit area of the recording medium can be expressed as 
follows [20]: 
 
 σ = [α - Up(d2 + δ)/d2]ε0(d2 + δ)/δd2  (13) 
 
where δ = d1/ε1 + d3/ε3; T is electric pulse duration; Up is VB of the air gap 
between experimental object and recording medium; d1, d2 and d3 are the 
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thickness of the object, air gap, and photosensitive material, respectively; ε0 
(1.00057 F/m-1), ε1 and ε3 are dielectric permittivity of air, experimental object 
and photosensitive material, respectively. 
VB of the air gap is: 
 
 Up = 312 + 6,2d2    (14) 
 
Consequently, a quadratic equation describing the width of the air gap is 
obtained: 
 
 6,2 d2

2 - (αT - 6,2δ - 312)d2 + 312 δ = 0  (15) 
 
It has the following solutions: 
 
 d2 = [αT - 6,2δ - 312] ± [(αT - 6,2δ - 312)2 - 7738δ)1/2  (16) 
 
Coronal gas discharge method has applications for researching H2O drops 
electrical parameters in gas discharge conditions [5]. 
The dielectric constant as a parameter of coronal gas discharge was described by 
[3, 10]. It is a reliable dielectric permittivity in a homogenous medium.  
The object conductivity is not practically reflected in the formation of the electric 
image. The image gives information on the dielectric and geometrical object 
characteristics, dielectric permittivity distribution and surface unevenness [5, 9].  
Dielectric permittivity is determined by the ability of a material to polarize due to 
an applied electric field, thereby partially neutralizing it in the material. 
Polarization refers to the displacement or orientation of associated electrical 
charges under the action of a field. 
Investigation with the method of color coronal spectral analysis [1, 21, 22, 37, 38] was 
performed on the electric glow of the control sample (distilled H2O) and 1% CaCO3 in 
a distilled H2O solution (Fig. 4).  
The electrode from Fig. 2 was positively charged. The negative electrode was 
approached until a corona breakdown voltage occurred. 
 

 
Figure 4: Color coronal images of the control sample (distilled H2O) and of the 
specimen with 1% CaCO3 in a distilled H2O solution. 
 

Fig. 4 illustrates that the photon emission for the control sample was E = 2.05 eV or 
λ = 605 nm, and the average outcome was in the Em orange range. The result for the 
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1% CaCO3 sample was E = 2.98 eV or λ = 416 nm, i.e., the average outcome was in 
the Em violet range. The difference was E = 0.92 eV. H2O drop radius was 0.41 cm 
or S = πr2. S = 3.14 x 0.412 = 0.528 cm2.  
For the control sample, the result was 2.11 eV/0.528 cm2 = 4.00 eV/cm-2. The result 
of the 1% CaCO3 sample was 2.98 eV/0.528 cm2 = 5.64 eV/cm-2.  
The outcome of a discharge at the liquid drops point of contact with the photo film is 
valuable. For distilled H2O, VB had 31% discharge with photons in the red Em, 
where E = 1.68 eV or λ = 738 nm. With 1% CaCO3, there was 73% discharge with 
photons in the violet Em, where E = 3.02 eV or λ = 410.5 nm. 
The method for brightness estimation from coronal discharge emission research 
was developed [19, 59].  
The formula calculates Peff of the device for color corona discharge: 
 
 Peff = U2/R  (17) 
 
where U = 12 kV. Corona discharge for H2O drop was R = 109 Ω. Peff = U2/R 
= 122106/109= 0.144 W. 
 
Results with pH and electric conductivity   
Table 1 shows the change of parameters for 1% (w/v) CaCO3 after 30 sec corona 
gas discharge, where U = 12 kV and ν =15 kHz. 
 

Table 1: Parameters for 1% CaCO3 in a distilled H2O solution with coronal gas 
discharge effect. 

Parameters Distilled H2O 1% (v/v) CaCO3 
1% (v/v) CaCO3 
Gas discharge effect 

Electric conductivity (µS/cm-1) 28.1 ±0.28 55.1 ±0.55 57.3 ±0.57 
pH 7.51 ±0.75 9.07 ±0.09 9.33 ±0.09 

 

There was an increase in the studied electric conductivity and pH values. The 
number of OH- hydroxyl groups also increased with higher pH values. 
There was a statistically significant difference between the 1% CaCO3 solution in 
distilled H2O before and after the coronal effect, according to the Student’s t-test 
at p < 0.01 level.  
 
Results of reactions with CaCO3 
The research on CaCO3 was performed with FTIR, which showed that the peaks 
at ṽ = 713, 873, 1457, 1627, 1793, 2512 and 3447 cm-1 [60, 61] (Fig. 5). 
DNES of H2O was studied from Temnata dupka (Dark hole) cave with Ca2+ 
and HCO3

- contents of 66 and 223 mg/L-1, respectively. A peak was observed 
at E = -0.1087 eV, λ = 11.41 μm and ṽ = 877 cm-1. FTIR analysis of CaCO3 
had the following results: E = -0.1082 eV; λ = 11.46 μm; and ṽ = 873 cm-1. 
H2O vapor spectral range ranged from 0 to 877 cm-1 [62]. Adsorption peaks 
for CaCO3 were at 713 and 875 cm-1. The results indicate that an analysis of 
peaks at 713 and within the interval of 873 ÷ 879 cm-1 can be used to evaluate 
NES processes with CaCO3 in H2O and air. Since exposure to H2O with 
different physicochemical parameters, air moisture, and thermal effects can be 
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assessed, the quality of CaCO3 solutions and protection against CO₂ emissions is 
stronger.  
 

 
Figure 5: FTIR results for CaCO3. 

 

The present study illustrates an increase in f(E) peak at 877 cm-1, from 32.6 to 
39.9 eV-1, during the process of coronal discharge on 1% CaCO3 in a distilled 
H2O solution (Table 2). 
 

Table 2: Results for  1% CaCO3 in a distilled H2O solution before and after coronal 
discharge.  

1% CaCO3 in distilled H2O 1% CaCO3 in distilled H2O after coronal 
discharge f(E) with eV-1 of 877 cm-1 

32.6 45.3 
32.3 44.8 
32.8 45.1 
32.8 45.2 
32.7 44.8 
32.2 44.7 
32.6 44.9 
32.7 44.8 
32.7 44.6 
32.8 45.2 
average result average result 
32.6 44.9 

 

There was a statistically significant difference between 1% CaCO3 in the 
distilled H2O solution after and before coronal discharge effect, according to 
Student’s t-test at p < 0.05 level, with r of 0.964. 
 
Conclusions 
Color corona spectral analysis method has been applied for studying CaCO3. 
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The following conclusions were drawn: a difference in the discharge parameters 
of H2O drops was observed for 1% CaCO3 in distilled H2O before and after 
coronal discharge effect; there was an increase in electric conductivity and pH 
studied parameters; the number of OH- hydroxyl groups also increased with 
higher pH values.  
During the coronal discharge process with 1% CaCO3 in a distilled H2O solution, this 
study illustrated the increase in the peak of energies distribution function for 
hydrogen bonds among H2O molecules f(E) at 877 cm-1, from 32.6 to 44.9 eV-1. 

These findings have applications for chemical processes with color corona discharge 
on CaCO3. 
There were corona gas discharge effects from the primordial atmosphere to H2O. 
In 1952, Miller-Urey experiments were performed with gas discharge effects in 
laboratory conditions. Twenty organic molecules have been structured from the 
following inorganic compounds: H2O, CH4, NH3, H2 and electric discharge [63]. 
Different scientists have repeated the Miller-Urey experiment.  
In 1968, [64] have synthesized porphyrin using a device with U = 12 kV. In 2014, 
[1] investigated corona discharge and protocells synthesis with the same value 
[64]. In 2021, [39] published chemical reactions of polar molecules in H2O with 
gas discharge conditions. In 2021, [65] have studied Miller-Urey experiment 
processes in a silica medium with U = 30 kV.   
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Abbreviations  
BoPET: biaxially-oriented polyethylene terephthalate 
Ca2+: calcium ions 
CaCO3: calcium carbonate 
Ca(HCО3)2: calcium hydrogen carbonate 
CH4: methane   
CO₂: carbon dioxide 
CO3

-: carbonate ions  
Cu: copper 
d: gap length 
DNES: differential non-equilibrium spectrum 
E: energy (eV) 
Em: electromagnetic spectrum 
eV: electron volts 
f(E): energy distribution spectrum function 
FTIR: Fourier transform infrared 
H2: hydrogen 
H2O: water 
HCO3

-: hydrogen carbonate ion  
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HOH: hydrogen hydroxide 
LED: light emitting diode 
N: nitrogen 
NES: non-equilibrium energy spectrum 
NH3: ammonia 
O: oxygen 
p: gas pressure  
Peff: effective power 
r: correlation coeficient 
R: electric resistance 
U: voltage (kV) 
VB: breakdown voltage 
 
Symbols definition 
α: electric pulse slope rate 
Δf: frequency change 
δ: surface tension 
θ: wetting angle  
λ: wavelength (nm) 
ν: electric frequency 
ṽ: wavenumber 
λ: wavelength  
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