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Abstract 
Herein, electrodeposition of Zn-Ni alloy thin films on CS substrates under various 
conditions, from sulfate baths containing Na3C6H5O7, C7H5NO3S, and 2-butyne-1,4diol, 
was studied. So as to have the best bath composition, a mixture design application was 
examined. The best obtained composition was: 0.3 M Na3C6H5O7

-, 0.1 g/L C7H5NO3S 
and 0.1 g/L 2-butyne-1,4-diol, for theoretical and experimental responses of 215.22 and 
221.60 HV, respectively. Zn-Ni coating morphological properties and composition were 
examined by SEM and EDS. It was found that, on optimal conditions, a significant 
decrease in the grain size occurred. The deposits were homogeneous, uniform, compact 
and fine-grained, without any pores at the surface. 
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Introduction 
It is well recognized that composite coatings of a single metal and alloys protect 
steel against corrosion, by improving its mechanical, physical and/or 
electrochemical properties. As such, Zn-based alloys have attracted a lot of 
interest in the last decade [1-9]. Zn-Ni alloy has received more attention, due to 
its high degree of corrosion resistance, mechanical characteristics and thermal 
stability, compared to Zn only and other Zn alloys coatings [10-17]. Zn-Ni alloy 
is more toxic than Zn-Cd alloy [18, 19], although it has been widely used in 
automotive, aeronautic, marine, building and electronics industries [20-22]. 
In order to improve coating quality, using additives is generally recommended. 
Generally, a small amount of additives affects the electroplating reaction 
kinetics, mainly by adsorption or complexation [23, 24]. Therefore, metals and 
metal oxides electroplating is often performed in baths containing organic 
additives [25-29]. 
The present study dealt with Zn-Ni coating electroplating from a sulfate bath. 
The main goal was to find the best bath composition that would produce coatings 

                                                      
 The abbreviations list is on page 108.  



Hawa Bendebane et al. / Portugaliae Electrochimica Acta 43 (2025) 101-111 

102 

with high quality and hardness. For this purpose, a mixture design method was 
examined, which provided maximum information on its constituents, their 
individual influences and possible interactions. This assessment allowed 
reducing the experiments number, facilitating the study planning and procedures 
[30, 31]. The desired response depended on the bath components concentration, 
which were Na3C6H5O7

-, C7H5NO3S and 2-butyne-1,4-diol. 
 
Experimental 
Material 
Low CS, conforming to SAE 1010, ASTM A-366 and QQS-698 standards, was 
used in this study. CS substrate chemical composition is given in Table 1. 
 

Table 1: Chemical composition of CS substrate. 
Element C Mn P S Fe 
max% 0.13 0.60 0.40 0.05 Remainder 

 

Electroplating 
Zn-Ni alloy coatings electrodeposition was carried out in a sulfate acid bath, of 
which compositions and operating conditions are shown in Table 2. The solution 
pH was from 4.3 to 4.5. Each experiment was performed in a fresh solution, to 
avoid problems such as metal ions depletion from the electrolyte. 
 

Table 2: Bath composition and operating conditions. 
Composition Quantity Operating conditions 

ZnSO4.7H2O 0.10 M 4.3 < pH < 4.5 
G = 63.8 mS 
T: 30 ± 1 °C  
Stirring speed: 300 rpm  
Electrolyte volume: 100 mL = 1 A/dm² 
e = 15 µm 

NiSO4.6H2O 0.10 M 
Na2SO4 0.40 M 
H2SO4 0.01M 
Na3C6H5O7 0.10- 0.30 M 
C7H5NO3S 0 - 0.30 g/L 
2-butyne-1,4-diol 0 - 0.30 g/L 

 

Zn-Ni deposits electrodeposition was performed in a conventional 
electrochemical cell with two electrodes (cathode and anode), to which constant 
ddp was applied, using a generator. The procedure was carried out by fixing the 
following parameters: T of 30±1 ºC, stirring speed around 300 rpm, electrolyte 
volume of 100 mL, I of 1 A/dm² and thickness of 15 µm. However, Na3C6H5O7

-, 
C7H5NO3S and 2- butyne-1,4-diol concentrations were changed, according to a 
matrix given by the mixture design (MINITAB 18) (Table 3). 
 

Table 3: Experimental results according to the mixture design. 
Std. 

order 
Na3C6H5O7  

(M) 
C7H5NO3S 

(g/L) 
2butyne1,4diol 

(g/L) 
Microhardness  

(HV) 
Theo microhardness 

(HV) 
Relat. 

incert.(%
Absol. 
incert.(2 0.10 0.30 0.10 194.20 198.60 2.22 4.40 

10 0.13 0.13 0.23 136.80 164.66 16.92 27.86 
8 0.23 0.13 0.13 168.80 182.53 7.52 13.73 
1 0.30 0.10 0.10 221.60 215.22 2.96 6.38 
6 0.10 0.20 0.20 144.60 156.38 7.53 11.78 
9 0.13 0.23 0.13 182.30 163.68 11.37 18.62 
3 0.10 0.10 0.30 174.50 163.41 6.78 11.09 
7 0.17 0.17 0.17 202.10 162.92 24.05 39.18 
4 0.20 0.20 0.10 141.70 158.19 10.42 16.49 
5 0.20 0.10 0.20 195.30 196.30 0.51 1.00 
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Results and discussion 
Simplex plot 
The simplex plot shows points in the plane space, which are: three at the triangle 
vertices, for 0.3 M Na3C6H5O7

-, 0.3 g/L C7H5NO3S and 0.3 g/L 2butyne1,4diol 
pure solutions; three on the triangle sides for the mixtures; and one in the triangle 
center consisting of the three components in equal proportions. These three 
complete mixtures had all components, but in different proportions (Fig. 1). 
 

 

Figure 1: Simplex plot. 
 

Henry's line of residual values 
Generally, Henry's line is useful for checking the model normality. It is seen that 
the points tend to form a line (Fig. 2). 
 

 
Figure 2: Henry's line of residual values for micro-hardness. 
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Cox plot 
The Cox plot (Fig. 3) presents the evolution of the estimated response by varying 
the proportion of a single component from a reference mixture, while keeping 
constant the other components ratio [30]. It consists in representing micro-
hardness variations along the Cox axis. 
Micro-hardness decreased with increased C7H5NO3S concentrations in the 
mixture, up to the reference line. On the other hand, beyond this line, an increase 
in micro-hardness was observed. It was also found that 2-butyne1,4diol presence 
did not have a remarkable effect on micro-hardness. However, Na3C6H5O7

- had a 
positive effect on the obtained coatings micro-hardness. 
 

 
Figure 3: Cox plot. 

 

Mathematical model 
The mathematical model applied to the response (Zn-Ni coating micro-hardness) 
is a quadratic model for three components, with a total of six coefficients for a 
single response, according to eq. 1. 
 

HV = 783.54 × [Na3C6H5O7
-] + 1016.54 × [C7H5NO3S]  

+ 283.54 × [2butyne 1,4diol] - 4872.22 × [Na3C6H5O7
-]  

× [C7H5NO3S] + 698.23 × [Na3C6H5O7
-] × [2butyne 1,4diol]  

- 2462.68 × [C7H5NO3S] × [2butyne 1,4diol]    (1) 
 
Graphics contour and surface response 
Simplex contour and response surfaces are shown in Fig. 4. On its left side, 
Na3C6H5O7

-, C7H5NO3S, and 2butyne1,4diol contour area and micro-hardness 
are shown. The best responses are represented by the red contour (>210 HV), 
which is located at the high level for 0.3 g/L Na3C6H5O7

-, and at the low level for 
0.1 g/L C7H5NO3S and 2butyne1,4diol each. The response surface represented in 
a polyhedron (on Fig. 4 right) is a concave triangle shape.  
It is seen that microhardness increased with lower C7H5NO3S and 2butyne1,4diol 
concentrations, and with higher Na3C6H5O7

- content. 
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Figure 4: Contour and response surface of a mixture: Na3C6H5O7

-, C7H5NO3S and 
2butyne 1,4diol. 
 

Optimization 
There are many optimization methods. Most of them have been created to deal 
with the mathematical problem of finding the multi-variable extreme, whether 
non-linear functions are subject to constraints or not. After several optimizations, 
the best results are shown in Table 4. 
 

Table 4: Optimal composition of the mixture Na3C6H5O7
-, C7H5NO3S and 2butyne 1,4 

diol. 
Optimal composition Theoretical 

response 
(HV) 

Experimental 
response 

(HV) 
Na3C6H5O7

-  
(M) 

C7H5NO3S 
(g/L) 

2butyne1,4diol 
(g/L) 

0.30 0.10 0.10 215.22 221.60 
 

Theoretical and experimental responses 
The following figure represents the plot of experimental response as a function of 
theoretical response. From Fig. 5, we can see that the experimental and estimated 
responses are on the regression line, with a very good value of 0.9846. 
 

 
Figure 5: Graphical representation of theoretical responses as a function of 
experimental responses. 
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From Table 2, it was confirmed that there was not a significant difference 
between experimental and theoretical values, which is represented by the relative 
and absolute incertitudes calculated according to eqs. 2 and 3, respectively. 
 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑐𝑒𝑟𝑡𝑖𝑡𝑢𝑑𝑒 (%) =  
.  .

.
× 100            (2) 

 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑖𝑛𝑐𝑒𝑟𝑡𝑖𝑡𝑢𝑑𝑒 (%) =  |Theo. −  Exp. |   (3) 

 
Characterization 
SEM analysis 
SEM images show that the bath composition influenced the coating quality. 
Indeed, with Na3C6H5O7

- only (Fig. 6a), a CS non-homogeneous oxidized 
surface was obtained.  
In contrast, the CS surface morphology was improved by C7H5NO3S addition 
(Fig. 6b), which turned out to be more homogeneous and less oxidized compared 
than that of Fig. 6a. 
By adding Na3C6H5O7

- and 2butyne1,4diol, the obtained deposit formed cracks 
(Fig. 6c). It is also seen that the grains have a large size and cauliflower shape. The 
same results were found by [32, 33]. It was found that the best surface in terms of 
quality and brightness was obtained in the presence of all additives (Fig. 6d). 
 

  

  
Figure 6: SEM image of Zn-Ni alloys deposited at different baths: (a) Na3C6H5O7

-; (b) 
Na3C6H5O7

- + C7H5NO3S; (c) Na3C6H5O7
- + 2butyne1,4diol; and (d) Na3C6H5O7

- + C7H5NO3S 
+ 2butyne1,4diol. I = 1A/dm², T = 30 ºC, ss = 300 rpm, Velectrolyte = 100 mL and e = 15µm. 
 

EDS analysis 
EDS analysis results showed that Zn content of Fig. 7a was lower than that of Fig. 7d, 
contrary to O. Ni concentration in the deposit varied between 6 and 21%. From 
literature, it was reported that Zn-Ni coatings ranging from 10 to 15 wt% Ni have 
better corrosion resistance [34]. 

 (d)  (c)  

(b) 
 

 (a)  



Hawa Bendebane et al. / Portugaliae Electrochimica Acta 43 (2025) 101-111 

107 

  

  
Figure 7: EDS elemental map analysis for (a) Na3C6H5O7

-; (b) Na3C6H5O7
- + C7H5NO3S; 

(c) Na3C6H5O7
- + 2butyne1,4diol; and (d) Na3C6H5O7

- + C7H5NO3S + 2butyne1,4diol. 
I = 1A/dm², T = 30 ºC, ss = 300 rpm, V electrolyte = 100 mL and e = 15 µm. 
 

Discussion 
These findings are consistent with other previous results, and the change in Zn-Ni 
alloy coatings quality and micro-hardness is explained by the additive molecules 
adsorption onto the cathode surface.  
It was found, by [11], that Na3C6H5O7

- effectively stabilizes Zn–Ni alloy plating 
baths. According to [35], it was found that Na3C6H5O7

- addition influenced the 
grains morphology and size. 
C7H5NO3S and 2-butyne 1-4 diol organic additives used in this study influenced 
the obtained coating roughness, by preventing the formation and growth of 
nodular structures. This finding was also reported by [36- 38]. 
It was found that O can disrupt the process, due to the formation of Zn(OH)2 

precipitate, which inhibits Ni deposition. This result agrees with that of [39], who 
found that O incorporation into the deposits is probably due to the formation of 
Zn(OH)2 layer.  
 
Conclusion 
This study was focused on the protection of low-CS against corrosion, using 
electrodeposition as a solution. Zn-Ni coatings were produced from a sulfate bath 
with 0.1 to 0.3 g/L of both C7H5NO3S and 2-butyne1-4diol (0.1 to 0.3 g/L) as 
additives, and 0.1 to 0.3 M Na3C6H5O7

- as complexing agent. 
The electrodeposition performance of Zn-Ni coating can be improved with the 
three components blend, by applying the mixture design method. This method 
employed a quadratic model that considered microhardness as a response to 
various constituents. A set of experiences and proposed formulations to 
determine the optimum conditions was herein built, leading to a gray, smooth, 
uniform, hard and bright coating. 
The mathematical model was validated by comparing theoretical and 
experimental microhardness results. Indeed, the fit was almost perfect, as the 
linear correlation constant was 0.9846.  

(d)     (c)  

(b) 
(a) 
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Optimization gave a mixture of three components, of which concentrations were 
0.3 M Na3C6H5O7

- and 0.1 g/L each C7H5NO3S and 2-butyne1,4diol. This 
corresponded to a theoretical microhardness of 215.22 HV. Indeed, to confirm 
and validate the theoretically obtained results, a check for an additional 
experiment under optimal conditions was performed, and the experimentally 
obtained microhardness value was 221.60 HV.  
From SEM analysis, it was found that the presence of additives played a 
significant role on the deposit surface morphology and homogeneity. 
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