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Abstract  
Al and its alloys have a low atomic weight and high strength to density ratio. These properties 
make them very useful for the construction of parts in automotive industry, such as engine 
blocks or pistons. Al is prone to corrosion, due to its negative standard E of 1.66 V vs. NHE. In 
addition, Al corrosion resistance strongly depends on pH. Therefore, it is important to 
undertake a general study of Al corrosion behavior.  
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Introduction 
Al alloys have been the material of choice for structural components of airplanes 
since about 1930. Increasing aircraft payload and fuel efficiency has become a 
significant problem in the aerospace industry, which has sped up the development of 
highly modern materials with extremely specific properties. Al corrosion and 
passivation are a subject of tremendous technological importance, due to the 
increased industrial applications of this metal [1, 2]. Al widespread use arises from 
its different physical and chemical properties, such as its low specific gravity, good 
thermal and electrical conductivity, and relatively low toxicity [3]. Al also has 
significant resistance to corrosion, because it quickly develops a passive oxide film 
[4]. However, due to the general aggressiveness of acidic solutions, CI are 
commonly used to reduce their action on metallic surfaces [5]. Passivation and 
pickling inhibitors are the two types of CI. Ecorr can be changed by passivation to 
more anodic levels. Pickling CI significantly lowers CR, while not affecting Ecorr 
[6]. Anions adsorption and CI effect on Al in strong acidic media have been the 
subject of numerous studies [7-13]. 
 
Results and discussion 
This essay addresses several elements of Al and its alloys passivity and pitting. 
Some hypotheses propose that anodic oxide coatings control the base metal 
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corrosion resistance. It is widely accepted that different factors affect the pitting of 
Al and other metals and their alloys, and its presupposed mechanisms in halogen 
environments. 
Due to the aging of Al and its alloys, which are extensively used in aerospace and 
automotive industries, there has been a recent increased interest in their localized CI. 
Four distinct pitting corrosion processes can be distinguished: on the passive film; 
inside the passive film; formation of so-called metastable pits, which begin and 
grow for a short time below the critical Ecorr before re-passivating (pitting 
intermediate step); and on the passive film, at their interface with the solution. 
Stable pit growth takes place above a certain E known as critical Ecorr. 
Numerous articles on the creation of stable pits have been written over the years. 
Although quantitative research was not recorded until the 1980s, the earliest 
qualitative accounts of metastable pits date back 30 years [14]. The corrosion 
processes, which degrade the metal and interact with an oxide layer, on and inside 
the passive film, are still unclear, although it is known that they are influenced by 
the oxide sheet composition and structure, T, E, electrolyte composition, existence, 
distribution of micro and macro defects (inclusions, second phase particles, etc.), 
crystal structure and degree of non-crystallinity affect oxides structural properties.  
 
CI 
The primary method for evaluating CI effect on pitting was Ecorr measurement. The 
most extensively studied and important CI for Al alloys is CrO4

2-. So, research of 
CrO4

2- CI will herein be the main topic of discussion.  A protective oxide layer is 
typically formed by anodic CI on the metal surface, causing a significant anodic 
shift in Ecorr. Typically, this change pushes the passivation zone towards the metal 
surface. In other words, CI reduce anodic CR and produce reaction products that 
thinly cover the anode. CrO4

2-, nitrates, tungstate and molybdates are a few 
examples of these CI. In order to prevent reducing components diffusion into the 
surface, cathodic CI typically either slow down the cathodic reaction or precipitate 
(selectively) on the cathode. Namely, they produce reaction products that precipitate 
only at cathodic sites and stop electrons flow from the anode to the cathode [15]. 
Used XPS technique to examine NO3

- and CrO4
- ions impact as CI for Al. Hydrated 

Cr III, Al III oxide and a large amount of adsorbed (incorporated) VI species were 
thought to arise in films formed on Al when CrO4

2- anions were present. The results 
showed that interactions between Al and various inhibiting or aggressive Cl ions 
from the solution took place at E values that were considerably more negative than 
critical Ecorr. The author discovered that, inside the shielding oxide film, the CI 
under study went through a reduction process.  
Somewhat comparable results were reported by [16] using the SIMS method, it was 
determined that Cr uptake by Al occurred rapidly, being, in theory, connected to 
Cr2O7

2-/CrO4
2- reduction in the surface film. It was also discovered that it occurred 

more gradually, and was thought to be connected to Cr2O7
2-/CrO4

2- penetration in the 
outer layer. It was proposed that CrO4

2- operates as CI, preventing Cl-, which was 
thought to be displaced from metal/oxide interface by O atoms provided by 
inhibitive oxyanions reduction, from being incorporated into the oxide film.  
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Using XRF, [17] investigated CrO4
2- species interaction with Al-supporting air-

formed and anodic films. Depending on the oxide layer thickness, they detected 
different Cr species valences. When a specimen with an air-generated film was 
immersed in a CrO4

2-/Cl- solution, Cr (III) was discovered to be present. On the 
other hand, a significant amount of Cr (VI) was found in a thick anodic film. In an 
intermediate thickness film (6 nm), both Cr (III) and Cr (VI) were present. The 
authors claimed that CrO4

2- species rapid reduction proceeded at bases. For air-
formed films, when their outer portion has been disaggregated or dissolved, it is 
thought that CrO4

2- species penetration may be decreased by an electron conduction 
process via the remnant film.  
Due to their outstanding corrosion resistance, better conductivity and high strength-
to-weight ratio, Al alloys are widely employed in the shipbuilding sector [18, 19]. 
Two common types of Al alloys for ship uses are AA5083 and AA6061 [20-23]. 
Intermetallic inclusions improve Al alloy mechanical characteristics, while 
increasing corrosion resistance. Mg and Fe/Mn-rich phases are the two main forms 
of intermetallic inclusions in AA5083. Fe/Si and Mg-rich phases are the two main 
types of intermetallic inclusions in AA6061 [24-27].  
Numerous factors influence Al alloy corrosion behavior in seawater [28-30]. Cl ions 
have a potent eroding impact on metals, which can eventually lead to localized 
corrosion and ruin passive films [31]. Seawater contains SO2 that dissolves to 
generate HSO3

-, which can hasten Al alloys corrosion [32, 33]. Another important 
aspect that greatly affects how Al alloys behave in terms of corrosion is T. The 
influence of various conditions on the corrosion behavior of AA5083 and AA6061 
must be studied.  
Due to water scarcity and contamination, naturally occurring reserves cannot satisfy 
fresh water demands [34, 35]. Fortunately, desalination technology has been 
developed and shown to be an effective solution to this problem [36, 37]. 
Desalination is widely used in Asia, Africa, Arabian countries, Europe, the Middle 
East, America and Australia, to meet their fresh water needs [38, 39]. RO, MED and 
MSF are the three desalination technologies most frequently used [40-46].  
Al brass is widely used to build water boxes, pipes, evaporator shells, tube plates, 
heat exchanger tubing and evaporators for MSF and MED technologies in modern 
desalination facilities. Since they require prolonged operation in a seawater 
desalination environment [47], investigating Al brass corrosion behavior and 
mechanism is crucial for the protection of these plants.   
For Al alloys in Sw environment, pitting is the most common and destructive type of 
corrosion [48], since the oxide film that forms on the metal has a positive surface 
charge and may take in Cl-. When the oxide layer is penetrated by absorbed Cl-, 
which has a short radius, pitting corrosion develops at the metal substrate/oxide film 
interface [49]. Pitting corrosion is a complicated process that depends on several 
variables, including the type and Ct of aggressive ions in the solution, T, the wet 
period length, and the native oxide deposit structural properties [50-54].  
Several studies have examined Al and its alloys pitting behavior in Cl- presence, 
including laboratory simulation acceleration experiments and field exposure 
corrosion testing. High Cl- deposition rates and anoxic conditions brought on by 
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corrosion products dissemination [54] on pure Al 1060, in a marine atmosphere in 
Xisha, were crucial factors in the pit depth continuous rise with exposure time. 
When examined Al pitting corrosion behavior, by sea, under various environmental 
circumstances, they discovered that it was worsened by higher Ct of Cl-. In previous 
studies, the authors investigated 2A02 Al alloy electrochemical corrosion behavior 
in a marine-like environment under accelerated conditions, having discovered that 
corrosion products could slow CR. In media containing Cl-, Al and its alloys are 
often susceptible to pitting corrosion [55].  
Further information must be obtained in order to understand the many forms of pits, 
how Cl- interacts with the oxide layer to degrade it, and how pitting corrosion 
manifests itself. Pitting corrosion can also happen by accident [56-59], which has to 
be assessed by using certain statistical methods. Although Al and its alloys corrosion 
behavior has been extensively studied, it varies significantly with the environment. 
Field exposure corrosion testing can offer more precise and reliable information 
about atmospheric corrosion, which is influenced by several different elements. 
 
Conclusions 
Al electrochemical and corrosive behavior was herein discussed extensively, with a 
focus on situations where it is present in natural and artificial water sources. 
Moreover, generic information has been considered, such as CI used for Al. 
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Abbreviations  
CI: corrosion inhibitor/inhibition 
Cl: chloride  
CR: corrosion rate  
CrO4

2-: chromate 
Ct: concentration 
E: potential 
MED: multi-effect distillation  
MSF: multi-stage flash  
NHE: normal hydrogen electrode 
RO: reverse osmosis  
SIMS: secondary-ion mass spectrometry 
T: temperature 
XPS: X-ray photon spectroscopy 
XRF: X-ray fluorescence spectroscopy  
Sw: sea water 
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