Redox Behaviour of a Tris(pyrazolyl)methanesulfonate Vanadium Complex, a Preliminary Study

T.F.S. Silva, a,b,c,* L.M.D.R.S. Martins, a,b A.J.L. Pombeiro

^a Departamento de Engenharia Química, ISEL, R. Conselheiro Emídio Navarro, 1950-062 Lisboa, Portugal

Received 14 November 2005; accepted 23 November 2005

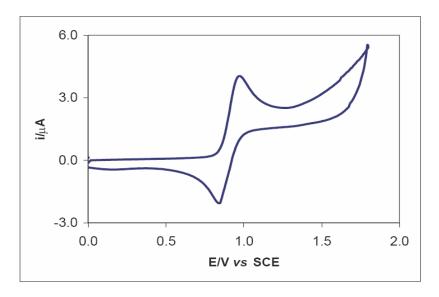
Abstract

The electrochemical behaviour of the new vanadium(IV) complex [VCl₃(SO₃Cpz₃)] (pz = pyrazolyl), obtained by reaction of VCl₃ with Li[SO₃Cpz₃], investigated by cyclic voltammetry and controlled potential electrolysis is reported and compared with those of hydrotris(pyrazolyl)borate vanadium(IV) complexes.

Keywords: Vanadium complexes, Tris(1-pyrazolyl)methanesulfonate; Tripodal ligands; Cyclic voltammetry.

Introduction

Tris(1-pyrazolyl)methanesulfonates, SO₃Cpz₃ (pz = pyrazolyl), with three N-deprotonated pyrazole rings bound to a carbon atom, hydrolytically stable and soluble in polar protic solvents, constitute a rather promising class of tripodal N-donor ligands in modern coordination chemistry [1]. However, vanadium complexes containing these ligands have not been reported so far.


We have been able [2] to synthesise the first tris(1-pyrazolyl)methanesulfonate vanadium(IV) complex, [VCl₃(SO₃Cpz₃)] (pz = pyrazolyl), derived from vanadium(III) chloride in the presence of lithium tris(1-pyrazolyl)methanesulfonate, which was completely characterized by IR and EPR spectroscopy, FAB-MS spectrometry and elemental analysis. Its electrochemical behaviour is described as follows.

^bCentro de Química Estrutural, Complexo I, IST, Av. Rovisco Pais, 1049-001 Lisboa, Portugal ^cÁrea Científica de Física, ISEL, R. Conselheiro Emídio Navarro, 1950-062 Lisboa, Portugal

^{*} Corresponding author. E-mail address: tsilva@dem.isel.ipl.pt

Results and discussion

The redox properties of the vanadium complex [VCl₃(SO₃Cpz₃)] (pz = pyrazolyl) were studied by cyclic voltammetry (CV) in a two-compartment three-electrode cell, at a Pt disc working electrode (ϕ = 500 μ m) and by controlled potential electrolysis (CPE), in a three-compartment three-electrode cell, at a Pt gauze working electrode, by using an EG&G PAR 273A potentiostat/galvanostat. Both techniques were carried out in an inert atmosphere (N₂), at room temperature, in a non-aqueous aprotic medium, 0.2 M [Bu₄N][BF₄]/CH₂Cl₂. The redox potentials are quoted relative to the SCE by using as internal reference the ferrocene/ferricinium couple (E_½ = 0.525 V vs. SCE in CH₂Cl₂).

Figure 1. Cyclic voltammogram of the complex [VCl₃(SO₃Cpz₃)] at a Pt disc electrode, in a 0.2 M [Bu₄N][BF₄]/CH₂Cl₂ solution ($v = 0.2 \text{ Vs}^{-1}$).

This complex exhibits only one single-electron (CPE) fully reversible ($ip_a/ip_c=1$;

 $\Delta E \cong 70$ mV) oxidation wave at $E_{\frac{1}{2}}^{ox} = 1.14$ V vs. SCE corresponding to the oxidation of V(IV) to V(V) (Fig. 1), whereas lithium tris(1-pyrazolyl)methanesulfonate is electrochemically inert in the potential range from -2.0 V to +2.0 V, at the above experimental conditions.

The V IV/V redox potential of our complex lies within the range of those reported for other V complexes with related tripodal ligands, namely the hydrotris(1-pyrazolyl)borate oxovanadium(IV) complexes [3] indicated in Table 1, which also undergoes a single-electron oxidation, although not fully reversible at the studied cyclic voltammetric time scale.

Table 1. Oxidation potential of vanadium(IV) complexes in CH₂Cl₂.

Complex	E° (V vs. SCE)
[VCl ₃ (SO ₃ Cpz ₃)]	1.14
[VO(HBpz ₃)(acac)]	1.21
$[VO\{HB(3,5-Me_2pz)_3\}(acac)]$	1.07
[VO(Cl)(HBpz ₃)(DMF)]	1.33
$[VO(Cl)\{HB(3,5-Me_2pz)_3\}(DMF)]$	1.21

(acac = acetilacetonate; DMF = dimethylformamide)

Final comments

We are now extending the synthetic and electrochemical study to derivatives of $[VCl_3(SO_3Cpz_3)]$ and to other metal tris(pyrazolyl)methanesulfonate complexes in order to attempt establishing redox potential-structure and -composition relationships.

Acknowledgements

This work has been partially supported by the IPL/41/2003 project, the POCTI (FEDER funded) program and the Fundação para a Ciência e Tecnologia (FCT), and the AQUACHEM Project RTN nº MRTN-CT-2003-503864, Portugal.

References

- 1. J.A. McCleverty, T.J. Meyer, *Comprehensive Coordination Chemistry II:* From Biology to Nanotechnology (2003) Vol. 1, Elsevier, p. 195.
- 2. T.F.S. Silva, L.M.D.R.S. Martins, A.A. Espada and A.J.L. Pombeiro, 6th Conference on Inorganic Chemistry, Madeira (2005) PP 22, p. 72.
- 3. M. Mohan, S.M. Holmes, R.J. Butcher, J.P. Jasinski and C.J. Carrano, *Inorg. Chem.* 31 (1992) 2029.