LOW TEMPERATURE EFFECTS ON CONDUCTIVITIES OF LITHIUM AND QUATERNARY AMMONIUM SALTS IN PROPYLENE CARBONATE AND γ-BUTYROLACTONE

César A. N. VIANA and Mavitidi DILO

Centro de Electroquímica e Cinética e Departamento de Química e Bioquímica da Universidade de Lisboa, Instituto Bento da Rocha Cabral, Calçada Bento da Rocha Cabral, 14, 1250-047 Lisboa, cviana@fc.ul.pt and mdilo@fc.ul.pt, Portugal

Abstract

Propylene carbonate (PC) and γ-butyrolactone (GBL) are important dipolar aprotic solvents good to prepare electrolyte solutions of lithium perchlorate applicable to rechargeable high energy batteries, as we have shown before [1 - 5].

In this work solution conductances of LiClO₄ and (C₂H₅)₂NBr in those solvents were measured at temperatures ranging from −30 °C to +25 °C. Limiting molar conductivities and association constants were evaluated through Vianna and Calado [6] and Fuoss and Hsi's equations [7]. Some thermodynamic functions resulting from \(K_{\alpha}, T \) variations are obtained and the results are discussed on this basis.

The accuracy and precision of the results is high and they are where possible comparable to others previously published [8, 9].
Introduction

Lithium perchlorate and other lithium salts have been used to obtain an optimisation of electrolyte solutions in aprotic solvents for primary and rechargeable lithium batteries [1-5, 10] stable over a wide temperature range. This is based on large anions with delocalised charges, which minimise the ion-ion interactions, and hence good stability and electric conductivity [11 – 13] can be expected. Propylene carbonate (PC) and γ-butyrolactone (GBL) are good aprotic solvents to prepare that type of solutions because they are stable [10] as a result of their medium to high permittivities and low viscosities [1]. In such solutions a chemical model should take into account all types of interactions ion-ion, ion-solvent, etc to evaluate the mean activity coefficients of free ions γ_i (FI) and that of ion pairs (IP) which are included in the equation for ionic association constant K_a, [14]. For 1:1 salts such expression is as follows:

$$K_a = \frac{1 - a}{a^2c} \frac{\gamma_{IP}}{\gamma_{FI}} \quad (1).$$

Based on this model we have recently calculated the ionic association constants of lithium perchlorate and tetraethylammonium bromide in both solvents at 25 °C and under pressures from 1 atm to 2000 bar [1]. Such association is often stronger than solvation in energetic terms according to Evans and col. [12] for some specific reasons. Related to these problems a recent theory based on Bjerrum’s electrostatic model was developed by Côté and col. [13, 15, 16] dealing with ion-ion and ion-solvent interactions to justify strong and stable associations for dilute solutions in aprotic solvents. Strong ionic associations in similar systems were reported by Reichstädter and col. [17] for lithium and sodium perchlorates in 2-butane being the results deeply discussed in several thermodynamic terms.

This paper is concerned with the determination of limiting molar conductivities and association constants of lithium perchlorate and tetraethylammonium bromide in the two referred solvents varying the temperature from -30 °C to +10 °C at one atmosphere. The two ions resulting from the last salt have not very different diameters and so this compound was only used for comparative reasons. These studies are completed with the determination of the thermodynamic functions resulting from (K_a, T) variations.

Experimental

1-Reagents: Lithium perchlorate (Riedel-de Haën) puriss >99%, tetraethylammonium bromide (Fluka) puriss >99%, propylene carbonate and γ-butyrolactone (Aldrich) with 99.7% and 99.5% of purity respectively without further purification. However, they were kept in a dry box with silica-gel and PO$_4$, accrossed by a slow flux of dry nitrogen, oxygen free. The relevant physical properties of the solvents were, within the experimental errors, in good agreement with those reported in the literature [3,18] (table 1).

Table 1. Physical properties of the solvents at 25 °C

<table>
<thead>
<tr>
<th>Solvent</th>
<th>ρ/g cm$^{-3}$</th>
<th>η/ cP</th>
<th>ϵ</th>
<th>χ/ S cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>1.189</td>
<td>2.513$^{(K)}$</td>
<td>64.92$^{(a)}$</td>
<td>0.9 \times 10$^{-7}$ $^{(a)}$</td>
</tr>
<tr>
<td>GBL</td>
<td>1.120</td>
<td>1.727$^{(a)}$</td>
<td>41.77$^{(a)}$</td>
<td>2.5 \times 10$^{-7}$ $^{(a)}$</td>
</tr>
</tbody>
</table>

aRef. 9, bRef. 19, cRef. 20
2-Solutions preparation: Each salt was dissolved in propylene carbonate or in \(\gamma \)-butyrolactone to make 50 mL of each solution and they were kept within the dry box. The stock solution with a concentration of about 0.1 mol dm\(^{-3}\) were obtained by dilution from the mother solutions. Different concentrations prepared from the stock solutions, were obtained by weight.

3-Conductivity measurements: The conductivity measurements were carried out with a conductance bridge Wayne Kerr B905 working at a frequency of 1 kHz. The results expressed by six figures were obtained through Ingold cells type 980-K19, carrying platinum electrodes. Cell constants varied from 0.97 cm\(^{-1}\) to 1.01 cm\(^{-1}\). A cryostat Julabo FP, W 90 was used to obtain the conductivities at the lower temperatures. A precision of 0.01 °C was always reached even for lower temperatures. Densities were determined with a Anton Paar, model DMA 60 densimeter, being them obtained with six figures.

Results and discussion

As it was referred before, the advantages of choosing two aprotic solvents to prepare electrolyte solutions good for high energy batteries, are the medium to high permittivities and low viscosities which favours good stability [21, 22] within large temperature and pressure ranges, particularly at low temperatures as it is the case of this paper.

The conductivity determinations of lithium perchlorate and tetraethylammonium bromide, in both PC and GBL were performed within the temperature range from 243.15 K to 283.15 K at 1 atm, at concentrations ranging \(5 \times 10^{-4} \) to \(10^{-2} \) mol dm\(^{-3}\). The limiting molar conductivities were obtained through Kohlrausch-Onsager equation (2) presented by Robinson and Stokes [2] and compared with the modified relationship (3), resulting from the Debye-Hückel theory [23].

\[
A = A_0 - S\sqrt{\alpha c} \tag{2}
\]

\[
A = A_0 - S\frac{\sqrt{\alpha c}}{1 + \sqrt{\alpha c}} \tag{3}
\]

The obtained limiting molar conductivities for each solution are shown in table 2, and they always increase with temperature.

The thermodynamic association constants were evaluated as a function of the degree of dissociation according to the relationship (4), as well as through the Fuoss and Hsia's equation [7].

\[
A = A_0 - \frac{K_a}{A_0} A' c f_s^2 \tag{4}
\]

where \(K_a \) is the association constant, \(c \) molar concentration, \(\alpha \) is the dissociation degree and \(f_s \) the activity coefficient obtained through the relationship (5)

\[
\log f_s = -A|Z, Z_1|\sqrt{\mu} \tag{5}
\]

Being the \(A \) is the Debye-Hückel coefficient, \(Z_1 \) and \(Z_2 \), the ionic charges and \(\mu \) the ionic strength. So the association constants were calculated through curve gradient of
A versus \(A'cfr^2 \). The data presented in Table 3 show that \(K_a \) always increases with temperature, which is consequence of an endoenergetic behaviour.

Table 2. Limiting molar conductivities \((A_0 / S \text{ cm}^2 \text{ mol}^{-1}) \) as function of temperature of lithium perchlorate and tetaethylammonium bromide in GBL and PC \((P = 1 \text{ atm}) \)

<table>
<thead>
<tr>
<th>Systems T/K</th>
<th>LiClO(_4) + GBL</th>
<th>Et(_2)NBr + GBL</th>
<th>LiClO(_4) + PC</th>
<th>Et(_2)NBr + PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>243.15</td>
<td>10.09 ± 0.09</td>
<td>15.30 ± 0.25</td>
<td>4.14 ± 0.03</td>
<td>6.69 ± 0.07</td>
</tr>
<tr>
<td>253.15</td>
<td>13.11 ± 0.09</td>
<td>20.06 ± 0.37</td>
<td>6.23 ± 0.04</td>
<td>10.15 ± 0.13</td>
</tr>
<tr>
<td>263.15</td>
<td>16.44 ± 0.10</td>
<td>25.42 ± 0.47</td>
<td>8.72 ± 0.07</td>
<td>14.30 ± 0.21</td>
</tr>
<tr>
<td>268.15</td>
<td>18.24 ± 0.13</td>
<td>28.32 ± 0.52</td>
<td>10.13 ± 0.08</td>
<td>16.64 ± 0.27</td>
</tr>
<tr>
<td>273.15</td>
<td>20.09 ± 0.15</td>
<td>31.35 ± 0.58</td>
<td>11.64 ± 0.10</td>
<td>19.11 ± 0.33</td>
</tr>
<tr>
<td>278.15</td>
<td>21.78 ± 0.11</td>
<td>34.43 ± 0.65</td>
<td>13.20 ± 0.12</td>
<td>21.72 ± 0.39</td>
</tr>
<tr>
<td>283.15</td>
<td>24.13 ± 0.20</td>
<td>37.64 ± 0.73</td>
<td>14.83 ± 0.13</td>
<td>24.46 ± 0.46</td>
</tr>
</tbody>
</table>

Table 3. Association constants \((K_a/\text{mol}^{-1} \text{ dm}^3) \) as function of temperature of lithium perchlorate and tetaethylammonium bromide in GBL and PC \((P = 1 \text{ atm}) \)

<table>
<thead>
<tr>
<th>Systems T/K</th>
<th>LiClO(_4) + GBL</th>
<th>Et(_2)NBr + GBL</th>
<th>LiClO(_4) + PC</th>
<th>Et(_2)NBr + PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>243.15</td>
<td>16.6212</td>
<td>16.5783</td>
<td>15.5334</td>
<td>12.7025</td>
</tr>
<tr>
<td>253.15</td>
<td>17.6826</td>
<td>17.2904</td>
<td>15.1219</td>
<td>13.9218</td>
</tr>
<tr>
<td>263.15</td>
<td>19.1325</td>
<td>18.6094</td>
<td>15.2403</td>
<td>15.6108</td>
</tr>
<tr>
<td>268.15</td>
<td>19.3296</td>
<td>19.3032</td>
<td>15.6912</td>
<td>16.4553</td>
</tr>
<tr>
<td>273.15</td>
<td>19.8627</td>
<td>20.1501</td>
<td>16.3459</td>
<td>17.2940</td>
</tr>
<tr>
<td>278.15</td>
<td>19.0069</td>
<td>20.4900</td>
<td>16.5973</td>
<td>18.1357</td>
</tr>
</tbody>
</table>
The evaluation of thermodynamic function resulting from ion pair (IP) equilibria was based on the well-known relation

$$\Delta G^0 = -RT\ln K_a = \Delta H^0 - T\Delta S^0$$ \hspace{1cm} (6)

According to the results the standard association free energy variations ΔG^0 fit a quadratic dependence on the temperature,

$$\Delta G^0 = a_0 + a_1T + a_2T^2$$ \hspace{1cm} (7)

from which standard entropies and enthalpies have been obtained from the following relations

$$\Delta S^0 = -a_1 - 2a_2T$$ \hspace{1cm} (8)

$$\Delta H^0 = a_0 - a_2T^3$$ \hspace{1cm} (9)

where a_0, a_1 and a_2 are represented in table (4)

Table 4. Coefficients a_i of the fitted temperature dependences of Gibbs energy

<table>
<thead>
<tr>
<th>Systems</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiClO$_4$ + GBL</td>
<td>6524.44</td>
<td>-62.8592</td>
<td>0.05198</td>
</tr>
<tr>
<td>Et$_4$NBr + GBL</td>
<td>-6314.52</td>
<td>38.5313</td>
<td>-0.14756</td>
</tr>
<tr>
<td>LiClO$_4$ + PC</td>
<td>-19936.2</td>
<td>134.705</td>
<td>-0.31044</td>
</tr>
<tr>
<td>Et$_4$NBr + PC</td>
<td>1141.83</td>
<td>-9.05434</td>
<td>-0.06885</td>
</tr>
</tbody>
</table>
Conclusions

Poor solvated or unsolvated anions are present in all solutions on account of their small charge density. Lithium cation should be extensively solvated while the contrary should happen to tetraethylammonium ion due to its large volume and low charge over it.

As it can be seen in figure 1, the (K_a, T) variations are linear for both GBL solution while non-linear for PC solution certainly due to some specific interactions in the latter cases. A similar situation was observed by Côté and co-workers [11].

A deeper analysis can be obtained through the values of other thermodynamic functions. These results are shown in figures (2 - 4) and generally positive enthalpy variations and also positive ΔS^0 from which negative ΔG^0 are resulting.

Figure 2: Variation of Gibbs energy as function of temperature of LiClO$_4$ and Et$_4$NBr in GBL and PC at 1 atm

Figure 3: Variation of enthalpies as function of temperature of LiClO$_4$ and Et$_4$NBr in GBL and PC at 1 atm

Figure 4: Variation of association entropies as function of temperature of LiClO$_4$ and Et$_4$NBr in GBL and PC at 1 atm
ΔS° is generally higher for tetraethylammonium bromide than for lithium perchlorate which is resulting from smaller ionic association as a consequence of both anion and cation having small charge density. Such situation corresponds to more ion freedom as it was demonstrated by Gilkerson and co-workers [24, 25] using U.V. and visible spectroscopies as well as N.M.R. methods.

In relation to lithium perchlorate the delocalised charge over a large anion certainly corresponds to small solvation on it. However lithium ion is small so creating a high electric field. Both large solvation and ion association could be expected. According to the entropy variations it slightly decreases as temperature increases when GBL is used as a solvent. Such result is certainly a consequence of some increasing of organizations mainly due to solvation of the solvent molecules group over the lithium ion.

On the other hand when PC is used as a solvent a large increase of ΔS° with temperature is observed which corresponds to small ion association and a better quality as electrolyte solution than the one in GBL. As a complementary to it, a ΔH° variation from negative to positive is observed as temperature increases.

Acknowledgments

The authors thank to the Fundação para a Ciência e Tecnologia for financial support and also to ICAT for supplying us the crio- stat to determine the conductance measurements at lower temperatures.

References

THE SENSITIZATION OF SELF-ASSEMBLED MONOLAYER FORMED BY OCTADECANETHIOL FOR THE PHOTO-ELECTRIC OXIDATION OF CH\textsubscript{3}OH ON THE TiO\textsubscript{2} NANOPOROUS FILM ELECTRODE

Keqiang Dinga, b, Zhenbin Jiaa, Jiaying Caoa, Ruting Tonga, Xinkui Wanga

a Department of Chemistry, Hebei Normal University, Shijiazhuang 050016, P.R. China. E-mail: dkeqiang@263.net

b Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, P.R. China

Abstract

Octadecanethiol self-assembled monolayer (OCSAM), which was first employed as one sensitizer for TiO\textsubscript{2} nanoporous film electrode in the oxidation of methanol, was firstly investigated using electrochemical and photoelectrochemical methods. The photocurrent generated by using TiO\textsubscript{2} nanoporous film electrode modified by OCSAM (18SH/TiO\textsubscript{2}) is about 1.95 times larger than that without modification. In addition, the maximum absorption peak has shifted towards the infrared region for about 30nm when the TiO\textsubscript{2} nanoporous film electrode modified with OCSAM. This paper has testified that the increased photocurrent could not be attributed to the photooxidation of octadecanethiol or the ethanol solvent simply. It was proposed that the change of structure of TiO\textsubscript{2} nanoporous film electrode should be responsible for the phenomenon in some degree.

Keywords: Octadecanethiol; Self-assembled monolayer; Sensitization; TiO\textsubscript{2} nanoporous film electrode; Photoelectrooxidation

Introduction

So far there are many papers dealing with TiO\textsubscript{2} electrode or TiO\textsubscript{2} nanoporous film electrode with an intention to improve the light-to-electricity conversion efficiency. The dye-sensitized photoelectrochemical cells have been widely investigated because of their characteristic of differentiating light absorption and charge separation. Many organic substance was tried to improve the conversion efficiency\cite{1-4}. Some noble metals, such as platinum and ruthenium, were also employed to sensitize the TiO\textsubscript{2} electrode\cite{5, 6}. Summarily, dye, nanoporous film, and noble metal are the three main sensizers for TiO\textsubscript{2} electrode. Nanoporous sulfide was also used to sensitize the TiO\textsubscript{2} nanoporous films electrode and TiO\textsubscript{2} self-assembled monolayer electrode\cite{7, 8}, where the light absorption of TiO\textsubscript{2} photoanodes could be extended into the visible region. In a word, the investigation of improving the conversion efficiency of light to electricity for TiO\textsubscript{2} has never been terminated.