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Computer simulation methods are now well established and powerful tools for studying very 

many problems o f chemical interest. Phase transitions, electrical and thermal conductivity, surfaces 

and adsorption, liquid crystals, structure and dynamics o f polymers, electrochemical interfaces, 

metal oxides, chemical reactivity, catalysis and drug design are examples o f problems that can be 

approached by computer simulation. 

In this paper we shall focus on computer simulation in Statistical Thermodynamics, namely 

the Molecular Dynamics and Monte Carlo methods. 

The present achievements, future challenges and some applications with interest for 

Electrochemistry w i l l be reviewed. 
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1. Introduction 

Science has evolved through the development o f theory to explain experimental facts. 

Experimental observations suggest physico-chemical models expressed by mathematical equations 

from which theoretical values are drawn and compared with experimental results. 

For example, the experiments on the scattering of a-particles, performed by Rutherford, 

suggested a kind o f planetary model for the atom, firstly described by Schrodinger's equation and 

later by Dirac's equation based on a sounder relativistic basis. In the same way, the experimental 

work on electrolyte solutions, conducted by Arrehnius and other researchers, firstly led to Debey-

Huckel 's theory and later to MacMil lan-Mayer ' s theory based on a sounder statistical basis. 

Sometimes theory precedes experiment. A well-known example is Einstein's general theory 

o f relativity followed by Eddigton's experimental observation o f the light deflection by Sun. 

In the last fifty years, with the advent o f computers, we have at our disposal the powerful 

computer molecular simulation methods, aiming at the resolution o f complex problems in 

Chemistry, complementing the experimental and theoretical standard methods. 

Presently it is possible, for example, to simulate the structure and dynamics o f polymers, the 

electrode/electrolyte interface, the structure and dynamics of solid and liquid electrolytes or to 

handle, by first principles, the problem o f chemical reactivity. 

The importance o f molecular simulation is two-fold: on one hand the resolution o f complex 

realistic problems in strict connection with experiment; on the other hand the test and improvement 

of theories by simulating model systems not available at the laboratory. Moreover, there are certain 

properties that are very difficult or even impossible to obtain experimentally. In such cases, 

computer simulation is a direct way to measure those properties. 

The theoretical basis o f computer simulation in Statistical Thermodynamics, namely the 

Monte Carlo and Molecular Dynamics methods, is the theory of statistical ensembles. 

In this article, we shall review the state of the art in this field focusing on the fundamental 

aspects, possibilities and limitations o f the methods. We shall also refer to some applications with 

interest for Electrochemistry, with emphasis on some research work developed in Portugal. 

Finally, some future perspectives of molecular simulation wi l l be drawn. 

2. Statistical Ensemble Theory 

In the present context, an ensemble is a collection of microstates compatible with a pre

defined set o f experimental constraints. A microstate, in turn, is defined by the specification of the 
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molecular positions and momenta (in the case of a classical description) or the corresponding wave 

function (in the case o f a quantum description) o f the system. 

The connection between Thermodynamics and Statistical Mechanics can be established 

through the following postulates [1-4]: 

• There exists a function, called the thermodynamic characteristic function, C F , which contains 

all the macroscopic information and depends upon the experimental constraints {natural 

variables) on the system. 

• There exists a function, called the partition function, PF , which contains all the microscopic 

information and depends upon the Hamiltonian and the natural variables o f the system. The 

universal relation between those functions is: 

C F ( X ) = In PF(H; X ) 

where In is the logarithmic function, H is the Hamiltonian o f the system and X represents 

the vector o f natural variables, 

• To change the experimental representation o f the functions, that is to say, to change the natural 

variables (constraints), so that all the information is preserved, appropriate Legendre and Laplace 

transformations must be performed, respectively, over the characteristic and partition functions. 

• Appropriate differential operators obtain the general relations between the thermodynamic and 

microscopic properties, for a given set of constraints, from the universal relation. 

Among the thermodynamic characteristic functions are the entropic fundamental relations, 

which, in the absence o f chemical reactions and external electromagnetic fields, can be written, in 

dimensionless form, as: 

S,/k = S,(E, V , N)/k 

S 2 /k = S 2 (H , p, N)/k 

S 3 /k = S 3 (L , V , u)/k 

S 4 /k = S 4 (R, p, u)/k 

where S n is the entropy, k the Boltzmann constant, E the internal energy, V the volume, N the 

number of molecules, H the enthalpy, p the pressure, L = E - uN , the H i l l energy, u the chemical 

potential and R = H - u N , the Ray energy. 
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The H i l l and Ray energies are not usually described in textbooks. Indeed, only recently, 

after the development o f the generalised theory o f adiabatic ensembles [3,4], they were shown to be 

of fundamental interest. 

The heat transferred in a thermodynamic process, Aq, is given by: 

( A E ) V ; N = (Aq) V ,N ; ( A H ) P , N = (Aq) p . N ; 

(AL) v ,n = (Aq)v^ ; (AR) P ; ( 1 = (Aq) P J I 

according to the experimental constraints. 

If adiabatic walls are imposed, we are in the field of adiabatic or shell ensembles. Adiabatic, 

meaning that the systems do not exchange heat with the environment and, at equilibrium, they reach 

the maximum of entropy compatible with the experimental constraints. Shell, meaning that, in their 

time evolution, the systems walk in a shell o f the phase-space with generalised energy ( G E ± A G E ) . 

A G E is due to the vacuum fluctuations, or weak coupling with external fields, and G E is the internal 

energy, the enthalpy, the H i l l energy or the Ray energy according to the experimental constraints. 

The semi-classical partition functions for the adiabatic ensembles can be written, in an 

unified form, in terms o f Dirac's 6-function [3]: 

where p N = P i , P2, P N and 1^ = r 1 ; r 2, r N are, respectively, the generalised linear momenta 

and position vectors o f the molecules. U(r N ) is the potential energy function and the summation 

term is the kinetic energy. 

The generalised Boltzmann's equation is: 

Qn = Z n j8 [X n -H]dx n 

H is the classical Hamiltonian o f the system: 

S n / k = l n Q n 

The indexed symbols are defined in the following table: 



- 65 -

n S n X n dx n Z n 

1 S , (E ,V,N) E d r N d p N 1 

2 S 2 (H,p,N) H - p V d r N d p N d V 
N ! h J 

N ! h 3 

3 S 3 (L ,V ,u ) L + i^N d r N d p N - 1 

4 S 4 (R,p, u) R - p V + u N d r N d p N d V 

N = o N ! h -

oo ! 

N=0 N ! h J 

where h is the Plank's constant, N ! corrects for the indistinguishability o f molecules and h 3 N keeps 

the observance o f Heisenberg's uncertainty principle and makes the partition functions 

dimensionless 

If appropriate Legendre and Laplace transformations are applied to the generalised 

Boltzmann's equation we shall obtain the formalisms for the remaining four statistical ensembles: 

-A(T , V , N)/kT = In Q(H; T, V , N) - canonical 

-G(T, p, N) /kT = In Q(H; T, p, N) - isothermal-isobaric 

-pV/kT = In Q(H; T, V , u) - grand-canonical 

0 = In Q(H; T, p, p) - generalised or null 

where A is the Helmohltz energy, G the Gibbs energy, T the temperature and Q(H; X ) the partition 

functions. 

For example, the semi-classical canonical partition function is the Laplace transform o f the 

microcanonical partition function Q ( E , V , N ) [4]: 

Q ( T , V , N ) = j Q ( E , V , N ) exp(-pE) dE = (N! h 3 N JT1 j jexp [- p H(p N , r N )]dp N dr N 

0 

where P = 1/kT. Accordingly, the thermodynamic characteristic function o f the canonical ensemble, 

- A / k T = S/k - E(dS/dE)v, N , is the Legendre transform o f the entropic relation S (E ,V ,N) /k [4]. 

Additionally, the canonical probability distribution function is: 

p ( p W , V , N ) d P » d r N = e x p | - p H ( p V " ) | d p N d r N 
F V F Q ( T , V , N ) 

The corresponding quantum forms are: 
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Q ( T , V , N ) = ^ e x P ( - P E i ) 

Q ( T , V , N ) = v | exp(-pH) | v >= T r exp(-pH) 

v 

where E i is the energy o f the ith quantum state and H the Hamiltonian operator. 

The second form, in terms o f the density matrix, is particularly useful for the development 

of quantum simulation methods, namely the methods based on Feynman's path integral formulation 

o f quantum mechanics [5,6]. 

The above considerations show that we have at our disposal eight ensembles describing 

eight experimental situations that can be set up in the laboratory. They are outlined in F ig . 1. 

S ( E . V. N ) 

3 
G (T . P , N ) 

S < L . v . n > j | 

3 
- P o r o u s W a l l s , J CT. V. | i ) I 

S ( R . P . n ) — P o r o u s P i s t o n s s v , Z C T . P . u ) 

Fig. 1. thermodynamic systems coupled with different reservoirs. 

k~LS(E,V,N) 
= In Q(E, V, N) 

(3E -0A(T, V, N) 
\nQ{T,V,N) 

k~lS{H,p,N) 
= In Q(H,p, N) 

0H -flG(T,p, N) 
In Q{T,p,N) 

k-lS(L,V,t*) 
= lnQ(L,V,fi) 

PL -0J(T, V, p.) 
\nQ{T,V,p.) 

k~lS(R,p, fi) 
= \nQ{R,p,ij.) 

f3R -0Z{T,p,p.) 
In Q(T,p,») 

Fig. 2. Summary of the Legendre and Laplace transformations. 
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We can easily move through the different ensembles, in a formal way, by means of 

appropriate Legendre and Laplace transformations, taking advantage of the experimental situations 

to be analysed. This is summarised in Fig . 2, where, in the arrows, P=l/kT is the parameter o f the 

Laplace transformations and E , H , L or R are the variables to be eliminated from the entropic 

relations. 

The observable macroscopic thermodynamic properties are average values o f mechanical 

properties over the microstates o f the system. Therefore, once the partition function or the 

probability distribution function (note that the partition function is the normalising factor of the 

distribution function) for a given system are known, all the observable properties can be analytically 

worked out. 

The operational point o f view is, however, much more difficult. The analytical treatment of 

any chosen ensemble implies the resolution o f multidimensional integrals or the knowledge o f a 

complete set o f wave functions. This is the huge problem o f Statistical Thermodynamics, 

analytically intractable for most o f the systems, but very simple or ideal ones. Therefore, the 

necessity o f using numerical methods for molecular simulation is inescapable. These methods are 

generally designated as Molecular Dynamics ( M D ) and Monte Carlo ( M C ) methods. 

3. Molecular Dynamics method 

The Molecular Dynamics method ( M D ) was established by Alder and Wainright [7] in the 

period 1957-59. Firstly, it was applied to a system o f hard spheres. Later, in the sixties, the method 

was extended to realistic potentials by Rahman [8] and by Verlet [9]. 

The method generates, sequentially in time, an ensemble o f microstates by the numerical 

integration o f the Newton's equations of motion, for each molecule in the model: 

d t 2 

where m i , rj and Fj are, respectively, the mass, the vector position and the total force acting on 

molecule i . 

The time averages o f the mechanical properties are calculated over the trajectory o f the 

system in phase space. 

The integration starts from a set o f initial positions and momenta and takes into account the 

forces acting on each molecule due to the other molecules in the model. 

M D was founded in the context o f the microcanonical ensemble: (E, V , N ) constants. Apart 

from a heuristic technique [10] to maintain the temperature constant, until 1980, M D was invariably 
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carried out in (E, V , N ) conditions. Following a master paper by Andersen [11], M D was extended 

to (H, p, N) [12,13], (T, V , N) [13-15] and (T, p, N) [13, 16-18] ensembles. These were remarkable 

achievements since those conditions are more appropriate for direct comparisons with experimental 

results. 

Finally, in the present decade, M D has been extended to situations allowing the exchange o f 

molecules o f the system with the surroundings, that is to say, to open systems [19-21]. This is, by 

itself, an important step forward, once the number o f molecules is a discrete variable and classical 

mechanics traditionally deals with continuous variables. 

4. Monte Carlo Method 

The Monte Carlo method ( M C ) [22] entered the Statistical Mechanics toolbox through a 

famous paper by Metropolis et al. [23] in 1953. 

The method randomly generates an ensemble o f microstates without any time sequence and 

performs the average o f mechanical properties over that ensemble. The calculations start from an 

initial microstate and take into account the interaction energy o f the molecules in the model. Picking 

up just one molecule and giving it a displacement in random directions generates a new microstate. 

The generation o f microstates is carried out so that they become distributed according to the 

appropriate probability distribution function for the chosen ensemble, which, as we know, 

presupposes a pre-defined set o f experimental constraints. This is realised by accepting or rejecting 

a new microstate j , generated from microstate i , with the following transition probability: 

where p is the ensemble probability distribution function and min is the minimum intrinsic 

function. When the new microstate j is rejected, the old microstate i is counted as a repeated one. 

In the case of the canonical ensemble: 

where U(j) is the potential energy o f microstate j . 

The method was straightforwardly extended to the isothermal-isobaric ensemble [22, 24] 

and to the grand-canonical ensemble [22, 25] by introducing the appropriate Boltzmann factors in 

the above transition probabilities. A further important extension o f the technique concerns the so-

called Gibbs ensemble [26-28] and Gibbs-Duhem integration [29, 30] Monte Carlo methods, which 
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allow the direct study of phase-equilibria as well as some kinds o f chemically reactive and 

associating systems [31 ]. 

A typical characteristic o f those methods is the assumption o f the separability o f the kinetic 

and potential energies in the Hamiltonian. The kinetic part is analytically integrated in the 

probability distribution functions and the sampling is only carried out on the configurâtional space. 

The extensions o f the Monte Carlo method to the microcanonical ensemble [32-35] and other 

adiabatic ensembles [36, 37], most of them carried out in the present decade, have, however, shown 

the possibility o f also performing the sampling on the momenta space. This is, by itself, a 

noteworthy achievement, for in such a form the Monte Carlo method turns out as the full 

nondeterministic counterpart o f the Molecular Dynamics method. Their equivalence is a further 

demonstration that deterministic chaos may be generated by the coupled classical equations o f 

motion. 

A s far as the equilibrium properties are concerned M C and M D are equivalent. However, as 

in M C the microstates are not generated in a time sequence, that is to say, there is no integration o f 

motion equations, the dynamic properties are not directly measured by M C , although some kind of 

stochastic dynamics may be worked out [38]. On the contrary, M D is fully deterministic and the 

dynamic properties can be calculated from the trajectory o f the system in phase space. 

5. Limitations 

The methods referred to so far presuppose well-defined simultaneous positions and 

velocities for the molecules. Apparently, this is a paradox, since Heisenberg's uncertainty principle 

is universally valid, in particular at an atomic level. However, it is well-known that the classical 

translational motion is approached when the de Broglie 's thermal wavelength of a molecule is less 

than the average distance between neighbouring molecules. This limit is reasonably attained for 

most o f the systems at normal thermodynamic conditions, except for liquids helium and hydrogen at 

very low temperatures. In the case o f molecules with internal degrees o f freedom, the classical 

approximation is also reasonable when the rotational energy spacings are small compared wit kT 

and the molecules are mainly in the ground state vibrational level. On the contrary, vibration is, 

mainly, a quantum phenomenon and, in general, it demands special quantum simulation approaches 

[5, 6, 22, 39]. However, in a first approximation, vibration may be treated classically by introducing 

harmonic potentials between the atoms and integrating the corresponding Newton's equations. This 

is common practice, for example, in molecular mechanics calculations [40]. 

The classical simulation methods also presuppose the knowledge o f the intermolecular 

potential energy function, a concept based on the Born-Oppenheimer approximation, where the 

nuclear and electronic degrees o f freedom are supposed to be strongly coupled. In reactive or 
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metallic systems, that strong coupling does not exist and the concept o f a pair potential between two 

closed shell atoms is no longer useful. Thus, another approach has to be used. A combination o f 

Density Functional Theory and Molecular Dynamics in the Carr-Parrinello method [41] is well 

suited to study those situations. In what follows we shall be mainly concerned with classical 

methods. 

6. Boundary Conditions 

Due to memory and computer time requirements, the number o f molecules that is possible to 

follow, presently, by M D or M C , are typically o f the order 10 3 - 10 6 depending on the computer 

available and the complexity o f the molecules. Those numbers are obviously very small i f we are 

interested in bulk systems, where the number of molecules is o f order 10 2 3 , for the surface effects 

can be significant. In such cases, the use o f boundary conditions is inevitable in order to attenuate 

those effects. 

Cubic periodic conditions are common in most of the calculations: N molecules are enclosed 

in a cubic box (simulation box) whose volume, V , is chosen according to a pre-defined density. The 

simulation box is made to behave as though it were part o f an infinite system by surrounding it with 

periodically repeated images o f itself, as illustrated in Fig . 3. 

The evaluation o f potential energy and forces must consider not only the particles in the 

simulation box, but also their images in order to eliminate surface effects and to approach a bulk 

system. When the interactions between molecules are short-ranged, that is to say, when they can be 

neglected after ~3 molecular diameters (the so-called cut-off distance, r c ) the calculation is carried 

out using the minimum image approximation with truncation: given a molecule i , the simulation 

box is translated so that is centred on i (see Fig . 3). Then the molecule i only interacts explicitly 

with the molecules or their images within the sphere of radius r c centred on molecule i . The distance 

r c must be less than half o f the simulation box side length. After the cut-off distance, it is assumed 

an uniform distribution o f molecules and long range corrections are analytically calculated [22]. 

The minimum image approximation with truncation is largely used in the study o f non-polar 

systems, in particular, o f noble gases. Such an approximation is, however, unsuitable for ionic or 

highly polar systems where the electrostatic interactions extend over many molecular diameters. A l l 

images have, then, to be accounted for. The classical method for calculating the electrostatic 

potential energy o f a system o f charges in a periodic cell is the Ewald sum [22]. However, the 

original expression and the computer code are rather involved. Adams and Dubey [42, 43] derived a 

modified expression for the Ewald sum in terms o f an effective pair potential. This enables the 

calculations to be performed in a very simple and efficient way. The modified Ewald sum is 

straightforwardly introduced in a conventional program. The calculations are also carried out with 
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the minimum image approximation, now without truncation, but taking into account explicitly only 

the molecules or images within the simulation box. 
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Fig. 3. Simulation box, its translation and boundary conditions in two dimensions. For clarity, 

only five particles are shown in each square. 

The density is maintained by assuming that when a molecule leaves the simulation box 

through a wall, an image enters the opposite wall with the same velocity. 

There are a variety o f boundary conditions [44], but, apart from the cube, the most suitable 

shape seems to be the truncated octahedron. 

7. Basic Computer Algorithms 

The following steps are involved in a conventional M D program at (E, V , N ) conditions: 

a) Assign initial positions r ; (0) to the molecules in the simulation box. The positions o f a lattice are 

generally chosen to initiate a calculation. Alternatively, the positions o f a previous run can be taken. 

b) Assign initial velocities v ; (0) to the molecules corresponding to a pre-defined temperature and a 

total momentum zero. 

c) Calculate the intermolecular potential energy 11(1^). 

d) Derive the force acting on each molecule: 

F i = _ V j u ( r N ) 

I f necessary, the calculations o f the potential energy and forces take into account boundary 

conditions. 
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e) Integrate Newton's equations o f motion for each of the N molecules, i f necessary taking into 

account boundary conditions. 

There are a variety o f numerical algorithms to carry out the integration, but a very simple and stable 

one is the Verlet's algorithm which may be written [22] in the so-called leapfrog version: 

Vj(t + At/2) = v,(t - At/2) + Fj(t) At/mj 

i"i(t + At) = rj(t) + Vj(t + At/2) At 

Vi(t) = [Vj(t + At/2) + Vj(t - At/2)]/2 

where At is the integration time-step. It must be less than the molecular relaxation times and is o f 

the order 10"1 6 - 10"1 4 seconds depending on the type o f molecules. 

f) Let the system evolve in time for the next rie time-steps, an appropriate number to reach 

equilibrium. 

g) Let the system evolve in time for the next n p time-steps, an appropriate number to obtain a good 

statistics. 

h) Calculate time averages o f the properties over the rip microstates. 

The algorithm keeps the volume and number o f molecules constant. Furthermore, once the 

initial positions and velocities are assigned, the initial total energy is defined. As the system evolves 

in time without external interferences, the total energy must also be a constant during the run. A l l 

the other properties w i l l , however, fluctuate. 

The extension o f the algorithm to other ensembles involves the definition of the respective 

constraints and the modification o f the motion equations in order to allow the coupling o f the 

system to a heat bath, a pressure reservoir or a bath at constant chemical potential [13, 19, 22]. 

The above algorithm is only appropriate for the molecular centre o f mass motion. For 

polyatomic molecules rotational and vibrational degrees of freedom must be considered. In many 

systems o f importance namely hydrocarbon melts, polymers and lipid bilayers, internal rotation and 

vibration are important in determining equilibrium and dynamical properties. 

The motion o f rigid models, or models with internal rotations and torsions, may be treated 

classically in the limit referred to in paragraph 5. There are a variety o f algorithms to describe 

rotation [22]. The inclusion o f vibration directly in a simulation is not an easy matter. As we have 

seen, it is essentially a quantum phenomenon, which can not be approached, in general terms, using 

the classical equations of motion. 
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When quantum phenomena is involved, the classical methods have either to take into 

account quantum corrections [22] or to be complemented by special quantum simulation methods 

referred to in paragraph 5. 

The conventional algorithm for the Monte Carlo method is similar and somewhat simpler. 

There are neither calculation o f forces nor integration of motion equations (steps d) and e) ). Also, 

for most o f the M C methods there are no sampling o f the momenta space. Thus, the assignment o f 

molecular velocities (step b) ) and their random alteration are absent. To generate a new 

configuration/«.?/ one molecule o f the model is taken and given a displacement in directions chosen 

at random. After the calculation of the potential energy the corresponding configuration is accepted 

or rejected with the probabilities referred to in paragraph 4. A l l the other steps in the algorithm are 

the same for M D and M C . 

Finally, it should be emphasised that one conventional Monte Carlo step corresponds to the 

random displacement o f just one molecule. Indeed, trying to move all the molecules simultaneously, 

at random, would result, for most o f the situations, in a configuration with a very low probability. 

On the contrary, one Molecular Dynamics time-step corresponds to the simultaneous deterministic 

displacement o f all the molecules in the model, since the molecular motions are oriented by the 

right forces acting on them. Thus, it is usual to measure a M C run in cycles; one cycle corresponds 

to having tried random displacements for each molecule in the sample. 

8. Hybrid methods 

The conventional M C method established by Metropolis et al. [23] is based in single-particle 

moves as we have referred to in the previous paragraph. It is possible, however, to introduce some 

o f the character o f Molecular Dynamics, which is intrinsically many-body, into a M C simulation 

[22]. This implies to move the particles, in some way, preferentially in the direction o f the forces 

acting on them. Such a possibility could be important in order to increase the efficiency in guiding 

the system in its search for favourable configurations, particularly i f collective motions are 

important in avoiding bottlenecks in phase-space. 

Another kind of problem is concerned with time scales. Suppose, for instance, a set o f heavy 

ions in a solvent such that the solvent molecules move much faster than the ions. This can be a 

serious problem in M D , for the short time-steps needed to follow the fast motions o f the solvent and 

the very long runs needed to follow the slower motions of the heavy ions can make the simulation 

very expensive. Even i f the motion o f the solvent molecules is not very important they are present 

in large numbers and their explicit account could make the calculations prohibitive. The approach, 

in such a case, may be the omission o f the solvent molecules and the representation o f their effects 
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by a combination o f random forces and frictional terms. The Newton's equations o f motion for the 

heavy ions are then replaced by some kind o f Langevin's equation [22]. 

9. Measurements 

Molecular simulation conducts computer experiments on molecular models. The aim o f the 

methods is to perform measurements o f the properties of the models whose results are analysed and 

compared with the measurements performed on real systems available in the laboratory. 

The total energy o f the system is given by: 

E=<ÍW?+u(rN)> 
i=l 1 

where the brackets < > mean the ensemble or time averages. 

I f an effective pair potential [22] is used the potential energy is pairwise additive, simply 
given by: 

U ( r N ) = Xu(rij) 
i<j 

where u(r;j) is the effective pair potential and ry =|rj - rj|. 

I f a Monte Carlo method without sampling o f the momenta space is used, the kinetic energy 

o f each microstate is not explicitly calculated and the average kinetic energy is given by 3/2 N kT, 

according to the theorem o f equipartition o f energy. 

The pressure o f the system is given by the virial theorem [22]: 

p=< 3 V j 

N D 2 N N 

i = l z m i i=lj>i 

where V is the volume and Fy is the force on molecule i due to molecule j . 

Again, i f a Monte Carlo method without sampling o f the momenta space is used, N k T / V 

gives the average kinetic part o f the pressure. 

The temperature of the system is also given by the equipartition theorem [22]: 

1 £ P 2 

3Nk p j 2 m i 
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Second order properties o f the system, like the heat capacities, can be measured from the 

fluctuations o f the microstate properties [22]. For example, the heat capacity at constant volume is 

given by: 

- - 3

k +< u 2>-< U> 2 

v 2 k T 2 

where U is the potential energy. 

One structural property o f the utmost importance is the radial distribution function (rdf). 

This function gives the local density o f the system at a distance r o f a molecule taken as origin. It 

reflects the space correlations between the molecules. Indeed, when r—> <x>, the radial distribution 

function must approach the bulk density o f the system. The normalised radial distribution function 

is given by: 

g ( r ) = < VAn( r ) 

where An(r) is the number o f molecules in the spherical shell o f volume 47tr2Ar at a distance r from 

the molecule taken as origin. 

The radial distribution function is one o f the properties very difficult to obtain from 

experiment. The experimental methods suitable to measure radial distribution functions are based 

on X-ray and neutron scattering. However, those measurements do not give the rdfs directly, but the 

structure factor, which has to be numerically Fourier transformed in order to get the rdfs. Also , by 

experiment, it is very difficult or even impossible to resolve the rdfs in different contributions. For 

example, the cation-anion, cation-cation and anion-anion contributions in molten electrolytes. N o 

such difficulty exists i f they are obtained by computer simulation. Fig. 4 shows rdfs for molten KC1 

obtained by M D and M C [45]. 

Dynamical properties, like the transport coefficients, can also be measured by molecular 

dynamics. For example, the self-diffusion coefficient can be obtained from the velocity auto

correlation function defined as: 

Z(t) = <Vi(t).Vi(0)> 

where vf is the velocity vector o f molecule i . The average is taken over the time and the number o f 

molecules. 
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3.00 — I 

Fig. 4. The radial distribution functions g+., g++, g. .for KG at -2870 K 

The shape o f Z(t) and its Fourier transform (frequency spectrum) give information about the 

molecular mechanism o f diffusion [46]. The self-diffusion coefficient is given by: 

1 0 0 

D = - Jz(t)dt 

The last equation expresses the fact that the self-diffusion coefficient is directly related to 

the fluctuations o f the molecular velocities at the equilibrium state. It is a particular case o f a 

general type o f formula for the phenomeno logical transport coefficients, the so-called Green-Kubo 

formulae, based on Linear Response Theory [47]. It establishes a relation between the response o f a 

system to an external generalised field and the fluctuations o f the system in the equilibrium state. I f 

the field is weakly coupled to the system, then the response of the system can be described in terms 

o f time correlation functions o f the system in equilibrium in the absence o f the field. 

The calculation o f the electrical conductivity, for example, can be carried out through: 

CT = — — J<Ix(t).Ix(0)>dt 
o 

where I x is the electric charge current due to a static electric field applied in the x direction and 

given by 
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N 
Ix( t )=I>i x i ( t ) 

i=l 

Analogous expressions can be derived for the other transport coefficients [47]. 

In more general terms it is possible to perform M D with the system under external 

perturbations and to study directly the response o f the system. The theory shows [44, 48] that the 

ratio o f the response to the external field gives the transport coefficient o f interest. Such methods 

are known as non-equilibrium molecular dynamics ( N E M D ) [48]. A n important feature o f N E M D 

is that it produce not merely the steady-state response o f the system to an applied perturbation, but 

also the average time dependent response, so that it becomes possible to obtain the frequency-

dependent transport coefficients. N E M D techniques are not restricted to use for the calculation o f 

transport coefficients, but also can successfully be used to measure second order properties [44] as 

an alternative to the fluctuation method referred to above. 

The auto-correlation function o f a dynamical property f(t) may be Fourier transformed to the 

correspondent frequency spectrum, as we have referred to for the velocity auto-correlation function. 

A general simplified expression is: 

For infra-red absorption and Raman band shapes, f corresponds to the dipole moment and 

polarizability tensor, respectively. The angular momentum auto-correlation function is simply 

related to the N M R spin relaxation time. Br i l louin and Rayleigh light scattered spectra also Fourier 

transform to auto-correlation functions o f dynamical properties. Therefore, additionally to thermal 

and transport properties, absorption and scattering properties may also be measured by computer 

simualtion [6, 49]. 

A l l the properties referred to so far are mechanical properties. This means they can be 

expressed as averages o f instantaneous properties o f the microstates, which, in turn, are expressed 

in terms o f the positions and velocities o f the molecules. There is, however, another class o f 

properties, based on the definition o f entropy, such as Gibbs energy, Helmholtz energy and 

chemical potential, the so-called statistical properties, which can not be expressed in those terms. 

They are global properties o f the deterministic trajectories in phase space (in the case o f M D ) or o f 

the stochastic ensembles (in the case o f M C ) . The direct calculation o f the entropy fundamentally 

involves counting techniques, easily giving rise to combinatorial explosion, which is impossible to 

solve, even in computational terms, for the majority o f molecular systems. There are some 

interesting proposals to approach the problem o f the direct calculation o f the entropy from the 

0 
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trajectory o f the system in phase-space [50]. Nevertheless, presently, we have mainly to rely on 

other techniques to measure statistical properties, namely the Widom's method [22] for the 

calculation o f chemical potentials. In the context o f the canonical ensemble, the excess chemical 

potential can be written as: 

where utest is the potential energy change due to the randomly addition o f a virtual particle to the 

system. This is the so-called particle insertion method easily implemented in a computer program 

[22]. Unfortunately, the method is not a general one. In fact, for high densities the probability o f 

inserting a particle in the system is obviously very small and the resulting poor statistics prevents 

reliable results. Various techniques have been proposed to circumvent the problem, but even so, the 

basic problem persists at high densities. Recently, Rowley et al. [51] have proposed the so-called 

osmotic method for the direct determination o f chemical potentials by M D . As the method does not 

involve particle insertion it allows the determination o f chemical potentials at virtually all densities. 

It is noteworthy that the problem o f the measurement o f statistical properties is only 

concerned with the excess contributions. The ideal contributions are analytically calculated. For 

example, the ideal part o f the chemical potential is readily given by: 

where A is de Broglie 's thermal wave length and p the density o f the system. 

I f the simulations are carried out in the grand-canonical ensemble, the chemical potential is 

one o f the constraints. It turns out [22] that the Helmholtz free energy can be obtained directly from: 

and, using that equation, it is possible to calculate all the remaining statistical properties. 

Another alternative is to perform the simulations in the grand-adiabatic ensemble [36], 

where the constraints are the Ray energy, R the pressure and the chemical potential. The beauty o f 

that kind o f simulation is that the entropy can be calculated directly: 

M'exc - - k T l n ( e x p ( - u t e s t

 / k T ) > 

A / N = p - < p ) u v T V / < N > t i V T 

S = R / ( T ) R p ^ 

I f instead o f absolute properties, the interest is in differences o f energy, as the difference o f 

Helmholtz energies, A A , between the reagents and products in a chemical reaction, it is shown [22, 

40] that: 
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A A = A , - A 0 = - k T l n < e x p [ - A u ( r N ) / k T j ) o 

where the average is performed over the representative configurations of the initial state of the 

system. In order to obtain a convenient convergence, the potential energy difference between the 

initial and final states AU (r N ) must be < kT which is not observed in most reactions. To circumvent 

the problem, the calculation may be divided into a number o f windows so that the total free energy 

difference is the sum over all windows [40]. To this end, a coupling parameter, X, is introduced in a 

perturbation mixed energy expression linking the two limiting states: 

The coupling parameter is varied from 0 to 1 over a number o f intermediate simulations, each with 

a different mixed potential energy. 

Finally, differences o f statistical properties between two states can be measured by setting 

up a reversible path (isochoric, isothermal or isobaric) connecting the states and carrying out a 

number o f independent simulations over the path. A t the end, an appropriate thermodynamic 

integration is performed over the state points [22]. For example, the difference in Helmoholtz free 

energy between to states in a reversible isothermal process may be obtained by: 

10. Applications to Electrochemistry 

The molecular simulation methods have successfully been applied to systems with interest 

for Electrochemistry since 1970. The M D and M C calculations o f water by Rahman and Stillinger 

[52], o f electrolyte solutions by Heinzinger and Voge l [53, 54], Card and Valleau [55], Rasaiah et 

al. [56], Turq et al. [57] and o f molten electrolytes by Woodcock and Singer [58] and Lantelme et 

al. [59] are the pillars o f the progress in this field. 

Unt i l now, very many applications have been accomplished, ranging from electrolyte 

solutions and molten electrolytes up to the electrical double layer, specific adsorption, nucleation, 

polymers, electrical conductivity, metal oxides, insulator-metal transitions, the positions o f counter-

ions in zeolites and molecule-metal potential surfaces. The interested readers on the theoretical and 

molecular simulation methods applied to Electrochemistry have good sources in a review paper by 

Barthel [60] and in the Journal of Electroanalytical Chemistry, 450 (1998), the late entirely 

dedicated to theoretical and computer simulation methods. 

U^(rN) = X U , + ( l - ^ ) U o 
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In this paper we shall only refer to two specific applications recently developed in Portugal. 

The first one comes from the Research Group o f Professor Ferreira Gomes in Porto and is 

concerned with the problem o f specific adsorption o f halide ions on noble metals. The second 

application comes from our own Research Group in Lisboa and is concerned with phase transitions 

o f ionic clusters, namely clusters o f potassium chloride. 

10.1 Specific adsorption of halide ions on noble metals 

A phenomenological definition relates the term specific adsorption to three types o f 

phenomenon [61]: the chemisorption o f ions on an electrode at point o f zero charge, the 

chemisorption o f anions on a negatively charged electrode and the chemisorption o f cations on a 

positively charged electrode. The two latter cases seem against the rules o f electrostatics. 

The experimental results on the specific adsorption o f halide ions on noble metals show that 

the strongest adsorbed ion is iodide and the weakest is fluoride. Also , in the group o f noble metals 

(copper, silver and gold) gold appears to the most attractive for halide ions. 

The calculations have involved, firstly, the analysis, by quantum mechanical methods, o f the 

interactions between the present species: ion-ion, ion-metal, ion-water, water-water, water-metal 

and metal-metal. Secondly, based on those interactions, the Monte Carlo method has been used to 

study the system ion/solvent/electrode focusing on the specific adsorption o f the ions on the 

electrode. The solvent contribution for the potential o f mean force acting on the ion has been 

obtained for the different halide ions in contact with a Cu(100) electrode. 

Several configurational details o f the system have been worked out through density profiles, 

radial distribution functions and snapshots. A new potential for the description o f the ion-metal 

interaction has been proposed. The free energy o f adsorption o f the ions obtained as a combination 

o f that potential with the solvent mean force has been found to be close to the experimental 

estimates o f this property for bromide and iodide. Also, the general tendency in the strength o f the 

adsorption, experimentally verified to decrease from iodide to fluoride, has been reproduced, for the 

first time, by the results o f the simulations, as it is shown in Fig.5. 

This conclusion is especially important considering the fact that the pure ion-metal 

interactions, obtained from the quantum mechanical calculations, show an opposite trend. Although 

the model used in the simulations is relatively modest, regarding the total number o f ions and 

solvent molecules in the model, the results are consistent and show the power o f the method in 

order to clarify the problem o f specific adsorption. 



- 81 -

z[A] 

Fig. 5. The solvent mean force, As, on each of the four halide ions, as a function of the distance 

of the ions from the Cu(lOO) surface [61]. 

10.2. Phase transitions in ionic clusters 

Clusters o f atoms and molecules play an important role in the real world. Their structural 

and thermodynamic properties are o f interest in many fields, for example, crystal growth, gas phase 

nucleation, structure o f amorphous materials, catalysis and atmospheric chemistry. 

Fernandes [62] carried out the first molecular dynamics simulations o f ionic clusters in 

1977. Phase transitions were not detected since the right range o f temperatures was not probed. 

A m i n i et al. [63-65] studied, by molecular dynamics, the melting o f alkali halide crystals with 512 

ions, detecting melting and glass transitions, but no recrystalisation. Sakamoto [66] studied, by 

Monte Carlo, the behaviour o f alkali halide clusters ( M X ) n with n=4,8 and 18 using the Born-Mayer 

potential without dipole-dipole and dipole-quadrupole contributions. He detected a melting 

transition, but no information is given on recrystalisation or glassy states. The same kind of 

potential has been used in the extensive molecular dynamics simulations o f K C 1 clusters carried out 

by Rose et al. [67-69]. They have detected melting and glassy states, but as far as freezing is 

concerned, they mention that the calculations, for the 64 ions cluster, revealed only a single case in 

which the cluster changed from its high potential energy liquid-like form back into its low potential 

solid-like form. In this instance, however, the return stay in solid-like form was relatively short and, 

moreover, once the cluster eventually transformed back into its liquid-like form it remained liquid

like for the duration o f the simulation. 

In order to settle down the problem, Fernandes and Neves [70] carried out extensive 

constant energy molecular dynamics simulations for KC1 clusters with 8, 64, 216 and 512 ions 

- 82 -

using the Born-Mayer-Huggins potential [58]. The results show that all the clusters exhibit first-

order-like melting and freezing transitions with hysteresis regions. Fig. 6 displays the evolution of 

the configurational energy with temperature for a 64-ions cluster: 

The behaviour o f the 8-ions cluster is similar, but it shows a smaller hysteresis. 

-610 - i 1 

-680 -1 1 1 . 1 1 1 1 1 . 1 1 1 
0 200 400 600 800 1000 1200 

Temperature / k 

Fig. 6. Configurational energy versus temperature for a 64-ions cluster. 

The curves were obtained by slow heating and cooling the cluster. The following snapshots show 

the structure o f the cluster at different temperatures. It is evident that the cluster has recrystalised in 

' its perfect original cubic lattice (see Fig.9) 

Fig. 7. Before melting, 85 IK (64 ions) 
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Fig. 8. After melting, 861K (64 ions) 

Fig. 9. After slow cooling, 2K (64 ions) 

-580 

-700 -I 1 1 1 1 1 1 ' H 1 1 « 1 
0 200 400 600 800 1000 1200 

temperature / K 

Fig. 10. Total energy versus temperature for a 512-ions cluster. 
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The clusters with 216 and 512 ions show a similar trend, although some differences must be 
noted. 

Firstly, the respective hysteresis regions are greater than those presented by the 8 and 64-

ions clusters as observed in F ig . 10. 

Secondly, the slow cooling curve in the solid part does not coincide with the corresponding 

slow heating curve, being systematically (~ 4kJ) higher in energy. This reflects an imperfect growth 

o f the crystal as can be observed in Fig. 11, taken at the end o f the slow cooling process (-100K). 

The structure has, clearly, a surface energy higher then the perfect crystal: 

Fig. 11. After slow cooling, -100K (512 ions) 

The melting points o f the clusters were estimated by taking the arithmetic mean o f the 

apparent melting and freezing temperatures. The following values were found: 696K (8 ions), 817K 

(64 ions), 890K (216 ions) and 906K (512 ions). As expected, the melting temperature increases 

with the cluster size and approaches the melting temperature o f the bulk system (-1000K). 

The fast cooling curve in F ig . 10 was obtained by instantaneously cooling the liquid at 0.75, 

0.5, 0.35, 0.25 and 0.1T m where T m is the estimated melting temperature. A t about 0.3T m , a glass

like transition is detected by: a slight change in the slope of the enthalpy curve (note that in this case 

the enthalpy is equal to the total energy since the pressure is zero); a marked decrease in the mean 

square displacements o f the ions; a thorough analysis o f the radial density functions. This behaviour 

is similar to the ones reported for the bulk system [71, 72]. Fig. 12 shows the structure o f the cluster 

at 0.1T m (-100K). In contrast with the snapshot in F i g . l 1, taken at about the same temperature, but 

after slow cooling, the cluster does not show any crystal structure. 

Finally, all the states, before and after the transitions, were stable for the duration of the 

simulation runs, based on 10 5-10 6 time steps. 
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Fig. 12. After fast cooling, -100K (0.1 Tm ; 512 ions) 

Our findings encourage us to pursue the investigation with the following main objectives. 

Firstly, to produce computer animations that could show the details of the ionic dynamics through 

phase transitions. This part is mostly accomplished and can be appreciated at an Internet site [73]. 

Secondly, to increase the number of ions in the model in order to analyse surface effects, the 

influence of impurities in the structure and hysteresis regions, as well as, the effects of induction 

forces in the transitions points. This part of the research is still in progress. Fig. 13 and 14 show 

snapshots of a 8000-ions cluster with an enclosed impurity: 

Fig. 13. Before melting 
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Fig. 14. After melting 

Apart from the beauty of the snapshots, the preliminary numerical results suggest that the 

effect of the impurity is not relevant regarding the hysteresis regions. On the contrary, the number 

of ions and the existence of a surface seem to be of major importance. 

11. Future developments 

The present achievements and challenges of molecular simulation anticipate many fruitful 

developments in the years ahead. 

Unti l recently, the total simulation times were limited by time-steps o f - 10" 1 6-10" 1 4 s used to 

take into account the fastest molecular motions. Additionally, the limitation in the number of 

particles in the models, and the effects of boundary conditions, have prevented the analysis of 

important space and time correlations as well as the influence of surfaces. 

The spectacular increase in computer power and the establishment of new algorithms for 

massive parallel machines, in the present decade, wi l l certainly lead to simulations extending over 

much longer time and space scales. This wi l l be a crucial step forward regarding, for example, 

crystal growth, polymer rearrangements, liquid crystals and hydrodynamic phenomena. 

The high complexity o f most chemical systems can not be tackled, however, only by 

applying the brute force approach o f increasing the length of the calculations. This is much so when 

the observable properties are independent of the fastest degrees of freedom. In such cases the use of 

more coarse-grained hamiltonians, where some interactions are not explicitly included, and some 

kind of Langevin dynamics wi l l be an alternative. 
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The problems concerned with electrostatic forces, o f utmost importance in Electrochemistry, 

w i l l certainly receive much more attention, regarding the efficiency (or even the need) o f the 

conventional Ewald sum for larger samples. 

Another foreseeable direction is an increase in the application o f hybrid quantum-classical 

methods. For example, the study o f clusters embedded in a condensed solvent [6], so that the 

clusters are treated quantum mechanically while the solvent is treated classically. 

The simulations o f reactive and metallic systems by ab initio simulations, such as the Carr-

Parrinello method referred to in paragraph 5., wi l l certainly be extended. The method avoids the use 

o f effective pair potential functions, although, it must be emphasised, they do not solve the time-

dependent Scrõdinger equation. Indeed, the motions o f the nuclei are followed by classical 

molecular dynamics. Therefore, problems like the tunnelling o f hydrogen atoms through the active 

sites o f a polymer can not be properly assessed. Also , the method mainly produces trajectories on 

the electronic ground state. Thus, the generalisation o f the molecular dynamics method in order to 

include the possibility o f electronic transitions driven by nuclear motions w i l l be an important 

achievement. 

Although the quantum simulation methods are expected to have important developments in 

the next years, the classical simulation methods wi l l continue to play a crucial role in Chemistry. 

They are able to sample phase space faster than the Carr-Parrinello method (~ 100 times). 

Therefore, for large systems and a meso-scale description they w i l l be, as far as possible, the best 

alternative. Indeed, many chemical phenomena can be appropriately described and correlated in 

classical terms. Thus, the development o f accurate force fields, including many-body forces, w i l l 

continue as one o f the main research aims o f chemical-physics. 

Finally, in the broader domain o f Computational Chemistry, the next decades w i l l see a 

major increase in the application o f Artif icial Intelligence methods [74], namely Neural Networks, 

Expert Systems and Genetic Algorithms. They try to reproduce intelligent reasoning using a 

computer. The concept o f parallelism is implicit, like in the human brain, and they have two 

essential characteristics: intuitive jumps and capacity of learning from experiment. Additionally, 

they are well suited for using Fuzzy Logic [75], an area o f increasing importance in Chemistry. 

Indeed, fuzzy logic is the science to approach complexity. The right connection between those 

methods and the computer simulation methods in Statistical Mechanics is yet to be seen, but 

important achievements in this field are certainly expected in the next years. 
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